#include <stdio.h>
#define maxn 1005
#define mod 1000000007
int cas,t = 1,road[maxn][maxn],n,k,ra,rb;
long long A[maxn],dp[maxn][maxn],size[maxn],ans; /*dp[i][j]表示从1到i节点有j个节点是其字数的最大值*/
void init()
{
int i,j;
A[0] = 1;
for(i = 1;i < maxn;i ++)
{
A[i] = A[i-1] * i % mod;
}
}
void init1()
{
int i,j;
for(i = 1;i <= n;i ++)
{
size[i] = 1;
for(j = 1;j <= n;j ++)
dp[i][j] = road[i][j] = 0;
}
}
long long fast_pow(long long x, int n) {
long long ret = 1;
while (n) {
if (n&1) ret = ret * x % mod;
n >>= 1;
x = x * x % mod;
}
return ret;
}
long long inv(long long x) {
return fast_pow(x, mod-2);
}
/*得到以每个点为根的子树的节点数*/
void LookRoad(int r)
{
int i;
for(i = 1;i <= n;i ++)
{
if(road[r][i])
{
road[r][i] = road[i][r] = 0;
LookRoad(i);
size[r] += size[i];
}
}
}
int main()
{
int i,j;
long long p,q;
scanf("%d",&cas);
init();
while(cas --)
{
scanf("%d %d",&n,&k);
init1();
for(i = 1;i < n;i ++)
{
scanf("%d %d",&ra,&rb);
road[ra][rb] = road[rb][ra] = 1;
}
LookRoad(1);
/*逆元代替分数*/
dp[0][0] = 1;
dp[0][1] = 0;
for(i = 1;i <= n;i ++)
{
p = inv(size[i]); /*该点是最大点的概率*/
q = (size[i]-1)*p%mod; /*该点不是最大点的概率*/
dp[i][0] = dp[i-1][0] * q % mod;
for(j = 1;j <= i;j ++)
{
dp[i][j] = (dp[i-1][j-1]*p%mod + dp[i-1][j]*q%mod)%mod;
}
}
ans = dp[n][k] * A[n] % mod;
printf("Case #%d: %lld
",t++,ans);
}
return 0;
}