zoukankan      html  css  js  c++  java
  • Codeforces Round #374 (Div. 2)解题报告

    Problem B: Passwords

    题意:给出n个字符串密码,在给出一个正确密码,输密码必须先输入简单的密码,连续输错k次密码会罚时5秒,输一次密码耗时1秒,求可能的最短和最长的耗时。(注意:给出的n个密码可能包含多个正确密码)

    思路:略

    code:

    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    #include <cstdlib>
    #include <ctime>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define rep(i,k,n) for(int i = k;i < n;i ++)
    #define repp(i,k,n) for(int i = k;i <= n;i ++)
    #define scan(d) scanf("%d",&d)
    #define scanl(d) scanf("%I64d",&d)
    #define scann(n,m) scanf("%d %d",&n,&m)
    #define scannl(n,m) scanf("%I64d %I64d",&n,&m)
    #define mst(a,k)  memset(a,k,sizeof(a))
    #define mod 1e9+7
    #define ll long long
    #define maxn 105
    using namespace std;
    int cnt[maxn];
    map<string,int> mmap;
    string p,s;
    int main(void){
        int n,k;
        cin >> n >>k;
        mst(cnt,0);
        mmap.clear();
        for(int i = 1;i <= n;i ++){
            cin >> p;
            mmap[p] ++;
            cnt[p.size()] ++;
        }
        cin >> s;
        int len = s.size();
        int cnt1,cnt2;
        cnt1 = cnt2 = 0;
        for(int i = 1;i <= len - 1;i ++){
            cnt1 += cnt[i];
        }
        cnt2 += cnt[len];
        cnt2 -= (mmap[s]);
        int ans1,ans2;
        ans1 = (cnt1/k)*5 + 1 + cnt1;
        ans2 = ((cnt1 + cnt2)/k)*5 + cnt1 + cnt2 + 1;
        printf("%d %d
    ",ans1,ans2);
        return 0;
    }
    View Code

    Problem C: Journey

    题意:给出一个有n个节点的有向图,每条路包含一个权值表示走过这条路的时间,要求在给出的总时间T内必须从起点1走到终点n,求在满足条件的情况下,走过节点数的最大值。

    思路:dfs + dp。dp[i][t]表示走到第i个节点路过节点数为t时使用的最小时间的,则dp[i][t] = min(dp[k][t-1]+t[k][i],dp[i][t])。

    code:

    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    #include <cstdlib>
    #include <ctime>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define rep(i,k,n) for(int i = k;i < n;i ++)
    #define repp(i,k,n) for(int i = k;i <= n;i ++)
    #define scan(d) scanf("%d",&d)
    #define scanl(d) scanf("%I64d",&d)
    #define scann(n,m) scanf("%d %d",&n,&m)
    #define scannl(n,m) scanf("%I64d %I64d",&n,&m)
    #define mst(a,k)  memset(a,k,sizeof(a))
    #define mod 1e9+7
    #define inf 2000000005
    #define ll long long
    #define maxn 5005
    using namespace std;
    int edgesCnt;
    int head[maxn];
    int fa[maxn][maxn];     //fa[i][j]表示走到第i个节点时走过了j个节点时的前驱
    int dp[maxn][maxn];     //dp[i][t]表示走到第i个节点路过节点数为t时使用的最小时间的,则dp[i][t] = min(dp[k][t-1]+t[k][i],dp[i][t])。
    int n,m,Tot;
    struct Edge{
        int to;
        int dist;
        int next;
    }edges[maxn];
    void init(){
        edgesCnt = 0;
        memset(head,-1,sizeof(head));
    }
    void addEdge(int from,int to,int d){
        edges[edgesCnt].dist = d;
        edges[edgesCnt].to = to;
        edges[edgesCnt].next = head[from];
        head[from] = edgesCnt;
        edgesCnt ++;
    }
    void dfs(int u,int step){
        for(int j = head[u];j != -1;j = edges[j].next){
            int v = edges[j].to;
            int d = edges[j].dist;
            if(dp[v][step+1] > dp[u][step]+d && dp[u][step]+d <= Tot){
                dp[v][step+1] = dp[u][step]+d;
                fa[v][step+1] = u;
                dfs(v,step+1);
            }
        }
    }
    //递归输出路径
    void print(int u,int j){
        if(u == 1) {
                printf("1 ");
                return;
        }
        else{
            print(fa[u][j],j-1);
        }
        printf("%d ",u);
        if(u == n)
            printf("
    ");
    }
    int main(void){
    
        cin >> n >> m >> Tot;
        init();
        for(int i = 1;i <= m;i ++){
            int u,v,d;
            scanf("%d %d %d",&u,&v,&d);
            addEdge(u,v,d);
        }
        for(int i = 1;i <= n+1;i ++){
            for(int j = 1;j <= n+1;j ++){
                dp[i][j] = inf;
            }
        }
        dp[1][1] = 0;
        dfs(1,1);
        for(int i = n;i >= 1;i --){
                if(dp[n][i] <= Tot){
                    printf("%d
    ",i);
                    print(n,i);
                    return 0;
                }
        }
        return 0;
    }
    View Code

    Problem D: Maxim and Array

    题意:给出一个包含n个数的数组,给出一个整数x,执行k次操作(对数组任意一个元素加x或减x)。求数组的积最小。

    思路:若数组的积的符号是负,则每次操作只需要对绝对值最小的元素执行操作;若数组的积是正,则同样是最绝对值最小的元素进行操作,目的是尽快实现变号,若无法变号,也可以使积变小。综上,只需使用优先队列处理至多k次操作即可。

    code:

    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    #include <cstdlib>
    #include <ctime>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define rep(i,k,n) for(int i = k;i < n;i ++)
    #define repp(i,k,n) for(int i = k;i <= n;i ++)
    #define scan(d) scanf("%d",&d)
    #define scanl(d) scanf("%I64d",&d)
    #define scann(n,m) scanf("%d %d",&n,&m)
    #define scannl(n,m) scanf("%I64d %I64d",&n,&m)
    #define mst(a,k)  memset(a,k,sizeof(a))
    #define mod 1e9+7
    #define ll long long
    #define maxn 200005
    using namespace std;
    ll a[maxn];
    ll n,k,x;
    int flag;
    struct node{
        int id;
        ll value;
        bool flag;         //状态,1代表正,0代表负
        bool operator < (const node& rhs) const{
            return value > rhs.value;
        }
    };
    int main(void){
        while(cin >> n >> k >> x){
            priority_queue<node> Q;
            //Q.clear();
            while(!Q.empty()) Q.pop();
            int cnt = 0;
            for(int i = 1;i <= n;i ++) {
                cin >> a[i];
                node p;
                if(a[i] < 0) {
                    cnt ++;
                    p.value = abs(a[i]);
                    p.flag = 0;
                    p.id = i;
                    Q.push(p);
                }
                else{
                    p.value = abs(a[i]);
                    p.flag = 1;
                    p.id = i;
                    Q.push(p);
                }
            }
            flag = cnt%2?-1:1;
            ll sum = x*k;
            while(k){
                node tp = Q.top();
                Q.pop();
                ll id,value,f;
                id = tp.id;
                value = tp.value;
                f = tp.flag;
                if(flag == 1){    //符号为正
                    if(sum > value){
                        a[id] -= f == 1?(value/x)*x:(-value/x)*x;
                        k -= (value/x);
                        sum = k*x;
                        if(a[id] >= 0 && f == 1) {a[id] -= x; k --; sum -= x;}
                        if(a[id] < 0 && f == 0) {a[id] += x; k --; sum -= x;}
                        flag = -1;
                        node p;
                        p.flag = f == 1?0:1;
                        p.id = id;
                        p.value = abs(a[id]);
                        Q.push(p);
                    }
                    else{
                        a[id] -= f == 1?sum:-sum;
                        k = sum = 0;
                    }
                }
                else{            //符号为负
                    a[id] += f == 1?x:-x;
                    k --;
                    sum -= x;
                    node p;
                    p.flag = f == 1?1:0;
                    p.id = id;
                    p.value = abs(a[id]);
                    Q.push(p);
                }
            }
            for(int i = 1;i <= n;i ++) printf("%I64d ",a[i]);
            cout << endl;
        }
        return 0;
    }
    View Code
  • 相关阅读:
    一般性能指标
    Spring之AOP框架
    关于电子商务网站
    超级省代码的TAB选项卡
    sql递归
    程序员必备工具,程序员专用工具,程序员专用搜索
    类拟google那样的图片载入
    创建脚本编辑器
    Ancher常用的三种三栏网页宽度自适应布局方法
    js日期加天数
  • 原文地址:https://www.cnblogs.com/zhangjialu2015/p/5927813.html
Copyright © 2011-2022 走看看