zoukankan      html  css  js  c++  java
  • Tensorflow (1)

    'tf.placeholder' or 'tf.Variable'

    The difference is that with tf.Variable you have to provide an initial value when you declare it. With tf.placeholder you don't have to provide an initial value and you can specify it at run time with the feed_dict argument inside Session.run

    'Session.run()' or 'Tensor.eval()'

    If you have a Tensor t, calling t.eval() is equivalent to calling tf.get_default_session().run(t).

    You can make a session the default as follows:

    t = tf.constant(42.0)
    sess = tf.Session()
    
    with sess.as_default():   # or `with sess:` to close on exit
        assert sess is tf.get_default_session()
        assert t.eval() == sess.run(t)

    The most important different is that you can use sess.run() to fetch the values of many tensors in the same step:

    t = tf.constant(42.0)
    u = tf.constant(37.0)
    tu = tf.mul(t, u)
    ut = tf.mul(u, t)
    with sess.as_default():
       tu.eval()  # runs one step
       ut.eval()  # runs one step
       sess.run([tu, ut])  # runs a single step

    Note that each call to eval and run will execute the whole graph from scratch. To cache the result of a computation, assign it to a tf.Variable.

  • 相关阅读:
    Python的文本数据
    Python
    正则表达式
    多数据库的链接
    工作感受月记 201902月
    女儿的出生
    工作感受月记 201901月
    工作感受月记 201812月
    工作感受月记 201811月
    工作感受月记 201809
  • 原文地址:https://www.cnblogs.com/zhanglianbo/p/6149864.html
Copyright © 2011-2022 走看看