zoukankan      html  css  js  c++  java
  • 吴恩达老师机器学习课程学习--课时九

    课时九     神经网络的学习

    这一课时主要是对神经网络进行学习,包括代价函数,反向传播算法等知识点。

    1、代价函数

    和其他机器学习算法一样,神经网络在预测时也会有误差,所以自然也有代价函数,代价函数形式:

    这个代价函数形式比较复杂,和逻辑回归的代价函数形式差不多,但是二者的正则项不一样,神经网络的正则项是排除每一层的Θ0之后,每一层Θ矩阵的和。(具体的含义我也没搞懂,总之是记住了这是神经网络的代价函数形式,以后在实际应用中再慢慢理解吧)

    2、反向传播算法

    反向传播算法的思想是先计算输出层的误差,然后再反向求出各层的误差,直到倒数第二层。

    3、梯度检验

    4、综合起来

    神经网络的使用步骤

    选择网络结构:决定有多少层以及每一层的神经单元数。第一层的单元数是我们训练集的特征数,最后一层的单元数是我们训练集的结果的类的种类数。

    如果隐藏层数大于1,确保每个隐藏层的单元数相同,通常情况下隐藏层的单元数越多越好。

    训练神经网络:

    1.参数的随机初始化

    2.利用正向传播算法计算所有的

    3.编写计算代价函数的代码

    4.利用反向传播算法计算所有偏导数

    5.利用数值检验方法来检验这些偏导数

    6.使用优化算法来最小化代价函数

    以上就是本节课时的内容,神经网络算法这节对我来说比较难,尤其是反向传播算法这里,所以还需要多看几遍课程,或是从其他资料继续学习,以上笔记内容来自“机器学习初学者”网站提供的吴恩达老师的2014机器学习课程笔记http://www.ai-start.com/

  • 相关阅读:
    asyncio异步 loop.run_in_executor操作同步方法变成异步操作
    pandas水平拆分dataframe
    vscode 运行python程序设置参数
    dbeaver 连接oracle11g 驱动问题
    python3 使用数据描述器,验证字段类型
    postgres 列转行操作记录
    python3 读取照片写入数据库postgres
    个人作业——软件工程实践总结作业
    2019 SDN上机第7次作业
    2019 SDN上机第6次作业
  • 原文地址:https://www.cnblogs.com/zhangliqiangvictory/p/13377582.html
Copyright © 2011-2022 走看看