zoukankan      html  css  js  c++  java
  • Hdu 1054 Strategic Game

    Strategic Game

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 8191    Accepted Submission(s): 3919

    Problem Description

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    The input file contains several data sets in text format. Each data set represents a tree with the following description:

    the number of nodes
    the description of each node in the following format
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
    or
    node_identifier:(0)

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

    For example for the tree:



    the solution is one soldier ( at the node 1).

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

    Sample Input

    4

    0:(1) 1

    1:(2) 2 3

    2:(0)

    3:(0)

    5

    3:(3) 1 4 2

    1:(1) 0

    2:(0)

    0:(0)

    4:(0)

    Sample Output

    1

    2

    #include<cstdio>  
    #include<cstdlib>  
    #include<cstring>  
    #include<cmath>  
    #include <vector>  
    #include<algorithm>  using namespace std;  
      
    const int maxn=1510;  
    int n;  
    int pre[maxn];//保存各点的匹配点  int vis[maxn];  
    vector<int> e[maxn];  
    int find(int u)//判断是否存在增广路,存在返回1  {  
        int i,v;  
        for(i=0;i<e[u].size();i++)  
        {  
            v=e[u][i];  
            if(vis[v])continue;  
            vis[v]=1;  
            if(pre[v]==-1||find(pre[v]))//找到未盖点,或者是增广路。          {  
                pre[v]=u;//匹配边和非匹配边交换              return 1;  
            }  
        }  
        return 0;  
    }  
      
    int main()  
    {  
        while(scanf("%d",&n)!=EOF)  
        {  
            int i,j,k,a,b,c,m;  
            memset(pre,-1,sizeof(pre));  
            for(i=0;i<n;i++)e[i].clear();  
            for(i=0;i<n;i++)  
            {  
                scanf("%d:(%d)",&a,&m);  
                for(j=0;j<m;j++)  
                {  
                    scanf("%d",&b);  
                    e[a].push_back(b);  
                    e[b].push_back(a);  
                }  
            }  
            int ans=0;  
            for(i=0;i<n;i++)  
            {  
                memset(vis,0,sizeof(vis));  
                ans+=find(i);  
            }  
            printf("%d
    ",ans/2);  
        }  
        return 0;  
    } 
    

      

  • 相关阅读:
    排序算法 之 冒泡排序 插入排序 希尔排序 堆排序
    DataStructure之线性表以及其实现
    使用可重入函数进行更安全的信号处理
    内存经济学
    电脑通用技能
    循环套餐的逻辑
    占用了多少内存
    索引的用法
    电脑的眼缘
    字符串积木
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057828.html
Copyright © 2011-2022 走看看