zoukankan      html  css  js  c++  java
  • Hdu 1054 Strategic Game

    Strategic Game

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 8191    Accepted Submission(s): 3919

    Problem Description

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    The input file contains several data sets in text format. Each data set represents a tree with the following description:

    the number of nodes
    the description of each node in the following format
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
    or
    node_identifier:(0)

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

    For example for the tree:



    the solution is one soldier ( at the node 1).

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

    Sample Input

    4

    0:(1) 1

    1:(2) 2 3

    2:(0)

    3:(0)

    5

    3:(3) 1 4 2

    1:(1) 0

    2:(0)

    0:(0)

    4:(0)

    Sample Output

    1

    2

    #include<cstdio>  
    #include<cstdlib>  
    #include<cstring>  
    #include<cmath>  
    #include <vector>  
    #include<algorithm>  using namespace std;  
      
    const int maxn=1510;  
    int n;  
    int pre[maxn];//保存各点的匹配点  int vis[maxn];  
    vector<int> e[maxn];  
    int find(int u)//判断是否存在增广路,存在返回1  {  
        int i,v;  
        for(i=0;i<e[u].size();i++)  
        {  
            v=e[u][i];  
            if(vis[v])continue;  
            vis[v]=1;  
            if(pre[v]==-1||find(pre[v]))//找到未盖点,或者是增广路。          {  
                pre[v]=u;//匹配边和非匹配边交换              return 1;  
            }  
        }  
        return 0;  
    }  
      
    int main()  
    {  
        while(scanf("%d",&n)!=EOF)  
        {  
            int i,j,k,a,b,c,m;  
            memset(pre,-1,sizeof(pre));  
            for(i=0;i<n;i++)e[i].clear();  
            for(i=0;i<n;i++)  
            {  
                scanf("%d:(%d)",&a,&m);  
                for(j=0;j<m;j++)  
                {  
                    scanf("%d",&b);  
                    e[a].push_back(b);  
                    e[b].push_back(a);  
                }  
            }  
            int ans=0;  
            for(i=0;i<n;i++)  
            {  
                memset(vis,0,sizeof(vis));  
                ans+=find(i);  
            }  
            printf("%d
    ",ans/2);  
        }  
        return 0;  
    } 
    

      

  • 相关阅读:
    多重背包POJ1276不要求恰好装满 poj1014多重背包恰好装满
    哈理工1053完全背包
    求最小公倍数与最大公约数的函数
    Bus Pass ZOJ 2913 BFS 最大中取最小的
    POJ 3624 charm bracelet 01背包 不要求装满
    HavelHakimi定理(判断一个序列是否可图)
    z0j1008Gnome Tetravex
    ZOJ 1136 Multiple BFS 取模 POJ 1465
    01背包 擎天柱 恰好装满 zjut(浙江工业大学OJ) 1355
    zoj 2412 水田灌溉,求连通分支个数
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057828.html
Copyright © 2011-2022 走看看