zoukankan      html  css  js  c++  java
  • Hdu 1853 Cyclic Tour

    Cyclic Tour

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
    Total Submission(s): 2674    Accepted Submission(s): 1371

    Problem Description

    There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?

    Input

    There are several test cases in the input. You should process to the end of file (EOF).
    The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).

    Output

    Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1.

    Sample Input

    6 9

    1 2 5

    2 3 5

    3 1 10

    3 4 12

    4 1 8

    4 6 11

    5 4 7

    5 6 9

    6 5 4

    6 5

    1 2 1

    2 3 1

    3 4 1

    4 5 1

    5 6 1

    Sample Output

    42

    -1

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<climits>
    using namespace std;
    #define N 505
    #define MAXN 1<<28int map[N][N];
    int lx[N], ly[N];
    int slack[N];
    int match[N];
    bool visitx[N], visity[N];
    int n;
    
    bool Hungary(int u)
    {
        visitx[u] = true;
        for(int i = 1; i <= n; ++i)
        {
            if(visity[i])
                continue;
            else
            {
                if(lx[u] + ly[i] == map[u][i])
                {
                    visity[i] = true;
                    if(match[i] == -1 || Hungary(match[i]))
                    {
                        match[i] = u;
                        return true;
                    }
                }
                else
                    slack[i] = min(slack[i], lx[u] + ly[i] - map[u][i]);
            }
        }
        return false;
    }
    
    void KM_perfect_match()
    {
        int temp;
        for(int i = 1; i <= n; ++i)
            lx[i] = -MAXN;
        memset(ly, 0, sizeof(ly));
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j)
                lx[i] = max(lx[i], map[i][j]);
        for(int i = 1; i <= n; ++i)
        {
            for(int j = 1; j <= n; ++j)
                slack[j] = MAXN;
            while(1)
            {
                memset(visitx, false, sizeof(visitx));
                memset(visity, false, sizeof(visity));
                if(Hungary(i))
                    break;
                else
                {
                    temp = MAXN;
                    for(int j = 1; j <= n; ++j)
                        if(!visity[j])
                            temp = min(temp, slack[j]);
                    for(int j = 1; j <= n; ++j)
                    {
                        if(visitx[j])
                            lx[j] -= temp;
                        if(visity[j])
                            ly[j] += temp;
                        else
                            slack[j] -= temp;
                    }
                }
            }
        }
    }
    
    int main()
    {
        int m;
        int a, b, cost;
        int ans;
        bool flag;
        while(scanf("%d%d", &n, &m) != EOF)
        {
            ans = 0;
            flag = true;
            memset(match, -1, sizeof(match));
            for(int i = 1; i <= n; ++i)
                for(int j = 1; j <= n; ++j)
                    map[i][j] = -MAXN;
            for(int i = 1; i <= m; ++i)
            {
                scanf("%d%d%d", &a, &b, &cost); //防止有重边。取较小值(负数实现)            if(-cost > map[a][b])
                    map[a][b] = -cost;
            }
            KM_perfect_match();
            for(int i = 1; i <= n; ++i) //是否有完美匹配        {
                if(match[i] == -1 || map[ match[i] ][i] == -MAXN)
                {
                    flag = false;
                    break;
                }
                ans += map[match[i]][i];
            }
            if(flag)
                printf("%d
    ", -ans);
            else
                printf("-1
    ");
        }
        return 0;
    }
    

      

  • 相关阅读:
    快速幂
    Oracle悲观锁和乐观锁
    UTL_RAW的问题?
    Linux操作系统下关于Top命令的参数详解
    存储过程与函数
    网站前端优化一些小经验
    Java获取各种常用时间方法2
    Pro CSS Techniques 读书笔记(六)
    Java获取各种常用时间方法
    Oracle专用服务器与共享服务器的区别
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7058051.html
Copyright © 2011-2022 走看看