zoukankan      html  css  js  c++  java
  • PyalgoTrade 交易(五)

    我们继续采取简单的策略,这次模拟实际交易。这个想法很简单:

    • 如果调整后的收盘价高于SMA(15),我们将进入多头仓位(我们下单买入市价)。
    • 如果调整后的收盘价低于SMA(15),我们退出多头头寸(我们出售)
    from pyalgotrade import strategy
    from pyalgotrade.barfeed import yahoofeed
    from pyalgotrade.technical import ma
    
    
    class MyStrategy(strategy.BacktestingStrategy):
        def __init__(self, feed, instrument, smaPeriod):
            super(MyStrategy, self).__init__(feed, 1000)
            self.__position = None
            self.__instrument = instrument
            # We'll use adjusted close values instead of regular close values.
            self.setUseAdjustedValues(True)
            self.__sma = ma.SMA(feed[instrument].getPriceDataSeries(), smaPeriod)
    
        def onEnterOk(self, position):
            execInfo = position.getEntryOrder().getExecutionInfo()
            self.info("BUY at $%.2f" % (execInfo.getPrice()))
    
        def onEnterCanceled(self, position):
            self.__position = None
    
        def onExitOk(self, position):
            execInfo = position.getExitOrder().getExecutionInfo()
            self.info("SELL at $%.2f" % (execInfo.getPrice()))
            self.__position = None
    
        def onExitCanceled(self, position):
            # If the exit was canceled, re-submit it.
            self.__position.exitMarket()
    
        def onBars(self, bars):
            # Wait for enough bars to be available to calculate a SMA.
            if self.__sma[-1] is None:
                return
    
            bar = bars[self.__instrument]
            # If a position was not opened, check if we should enter a long position.
            if self.__position is None:
                if bar.getPrice() > self.__sma[-1]:
                    # Enter a buy market order for 10 shares. The order is good till canceled.
                    self.__position = self.enterLong(self.__instrument, 10, True)
            # Check if we have to exit the position.
            elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
                self.__position.exitMarket()
    
    
    def run_strategy(smaPeriod):
        # Load the yahoo feed from the CSV file
        feed = yahoofeed.Feed()
        feed.addBarsFromCSV("orcl", "orcl-2000.csv")
    
        # Evaluate the strategy with the feed.
        myStrategy = MyStrategy(feed, "orcl", smaPeriod)
        myStrategy.run()
        print "Final portfolio value: $%.2f" % myStrategy.getBroker().getEquity()
    
    run_strategy(15)

    运行策略后看到如下结果

    2000-01-26 00:00:00 strategy [INFO] BUY at $27.26
    2000-01-28 00:00:00 strategy [INFO] SELL at $24.74
    2000-02-03 00:00:00 strategy [INFO] BUY at $26.60
    2000-02-22 00:00:00 strategy [INFO] SELL at $28.40
    2000-02-23 00:00:00 strategy [INFO] BUY at $28.91
    2000-03-31 00:00:00 strategy [INFO] SELL at $38.51
    2000-04-07 00:00:00 strategy [INFO] BUY at $40.19
    2000-04-12 00:00:00 strategy [INFO] SELL at $37.44
    2000-04-19 00:00:00 strategy [INFO] BUY at $37.76
    2000-04-20 00:00:00 strategy [INFO] SELL at $35.45
    2000-04-28 00:00:00 strategy [INFO] BUY at $37.70
    2000-05-05 00:00:00 strategy [INFO] SELL at $35.54
    2000-05-08 00:00:00 strategy [INFO] BUY at $36.17
    2000-05-09 00:00:00 strategy [INFO] SELL at $35.39
    2000-05-16 00:00:00 strategy [INFO] BUY at $37.28
    2000-05-19 00:00:00 strategy [INFO] SELL at $34.58
    2000-05-31 00:00:00 strategy [INFO] BUY at $35.18
    2000-06-23 00:00:00 strategy [INFO] SELL at $38.81
    2000-06-27 00:00:00 strategy [INFO] BUY at $39.56
    2000-06-28 00:00:00 strategy [INFO] SELL at $39.42
    2000-06-29 00:00:00 strategy [INFO] BUY at $39.41
    2000-06-30 00:00:00 strategy [INFO] SELL at $38.60
    2000-07-03 00:00:00 strategy [INFO] BUY at $38.96
    2000-07-05 00:00:00 strategy [INFO] SELL at $36.89
    2000-07-21 00:00:00 strategy [INFO] BUY at $37.19
    2000-07-24 00:00:00 strategy [INFO] SELL at $37.04
    2000-07-26 00:00:00 strategy [INFO] BUY at $35.93
    2000-07-28 00:00:00 strategy [INFO] SELL at $36.08
    2000-08-01 00:00:00 strategy [INFO] BUY at $36.11
    2000-08-02 00:00:00 strategy [INFO] SELL at $35.06
    2000-08-04 00:00:00 strategy [INFO] BUY at $37.61
    2000-09-11 00:00:00 strategy [INFO] SELL at $41.34
    2000-09-29 00:00:00 strategy [INFO] BUY at $39.07
    2000-10-02 00:00:00 strategy [INFO] SELL at $38.30
    2000-10-20 00:00:00 strategy [INFO] BUY at $34.71
    2000-10-31 00:00:00 strategy [INFO] SELL at $31.34
    2000-11-20 00:00:00 strategy [INFO] BUY at $23.35
    2000-11-21 00:00:00 strategy [INFO] SELL at $23.83
    2000-12-01 00:00:00 strategy [INFO] BUY at $25.33
    2000-12-21 00:00:00 strategy [INFO] SELL at $26.72
    2000-12-22 00:00:00 strategy [INFO] BUY at $29.17
    Final portfolio value: $979.44

    如果调整sma的测试周期,讲得到不一样的结果

    for i in range(10, 30):
        run_strategy(i)

    我们发现sma(20)的结果最好

    Final portfolio value: $1075.38



    作者:readilen
    链接:http://www.jianshu.com/p/3ac363f931d3
    來源:简书
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 相关阅读:
    String 中的秘密
    delphi中一切皆指针
    Servlet容器模型(四)ServletConfig、ServletContext
    用DELPHI的RTTI实现对象的XML持久化
    通过崩溃地址找错误行数之Delphi版
    delphi json(CDS包含了Delta数据包)
    Delphi中JSon SuperObject 使用:数据集与JSON对象互转
    用Delphi实现Windows的鼠标钩子函数
    HDU--1213--How Many Tables--并查集
    用DELPHI的RTTI实现数据集的简单对象化
  • 原文地址:https://www.cnblogs.com/zhanglong8681/p/7569226.html
Copyright © 2011-2022 走看看