zoukankan      html  css  js  c++  java
  • POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)

    http://poj.org/problem?id=1273

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    EK算法:
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <queue>
    #define inf 0x3f3f3f3f
    using namespace std;
    int map[201][201],n,m,v[201],pre[201];
    int bfs(int s,int t)
    {
        queue<int>q;
        q.push(s);
        memset(pre,-1,sizeof(pre));
        memset(v,0,sizeof(v));
        pre[s]=s;
        v[s]=1;
        while(!q.empty())
        {
            int w=q.front();
            q.pop();
            for(int i=1; i<=n; i++)
            {
                if(map[w][i]&&!v[i])
                {
                    pre[i]=w;
                    v[i]=1;
                    if(i==t)
                    {
                        return 1;
                    }
                    q.push(i);
                }
            }
        }
        return 0;
    }
    void EK(int s,int t)
    {
        int ans=0,minx;
        while(bfs(s,t)==1)
        {
            minx=inf;
            for(int i=t; i!=s; i=pre[i])
            {
                minx=min(minx,map[pre[i]][i]);
            }
            for(int i=t; i!=s; i=pre[i])
            {
                map[pre[i]][i]-=minx;
                map[i][pre[i]]+=minx;
            }
            ans+=minx;
        }
        printf("%d
    ",ans);
        return ;
    }
    int main()
    {
        int xx,yy,zz;
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            memset(map,0,sizeof(map));
            while(m--)
            {
                scanf("%d%d%d",&xx,&yy,&zz);
                map[xx][yy]+=zz;
            }
            EK(1,n);
        }
        return 0;
    }

    dinic算法:

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    #include <queue>
    #define inf 0x3f3f3f3f
    using namespace std;
    int map[201][201],dis[201];
    int m,n;
    int bfs(int s,int t)
    {
        memset(dis,-1,sizeof(dis));
        dis[s]=0;
        queue<int>q;
        q.push(s);
        while(!q.empty())
        {
            int y=q.front();
            q.pop();
            for(int i=1; i<=n; i++)
            {
                if(dis[i]==-1&&map[y][i])
                {
                    dis[i]=dis[y]+1;
                    q.push(i);
                }
            }
        }
        if(dis[t]>0) return 1;
        return 0;
    }
    int dinic(int s,int maxt)
    {
        if(s==n) return maxt;
        int a,sum=maxt;
        for(int i=1; i<=n&&sum; i++)
        {
            if(dis[i]==dis[s]+1&&map[s][i]>0)
            {
                a=dinic(i,min(sum,map[s][i]));
                map[s][i]-=a;
                map[i][s]+=a;
                sum-=a;
            }
        }
        return maxt-sum;
    }
    int main()
    {
        int x,y,z,ans;
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            ans=0;
            memset(map,0,sizeof(map));
            while(m--)
            {
                scanf("%d%d%d",&x,&y,&z);
                map[x][y]+=z;
            }
            while(bfs(1,n)==1)
            {
                ans+=dinic(1,inf);
            }
            printf("%d
    ",ans);
        }
        return 0;
    }



  • 相关阅读:
    0209利用innobackupex进行简单数据库的备份
    0208如何利用federated配置远程的数据库和本地数据相互交互
    0208MySQL5.7之Group Replication
    解决问题的方法
    0123简单配置LNMP
    0120Keeplived实现自动切换Mysql服务
    0116MySql主从复制监控
    大数据导入EXCEL
    OSI结构和TCP/IP模型
    ORA-12154 TNS无法解析指定的连接标识符
  • 原文地址:https://www.cnblogs.com/zhangmingcheng/p/4009486.html
Copyright © 2011-2022 走看看