zoukankan      html  css  js  c++  java
  • HDU:Gauss Fibonacci(矩阵快速幂+二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=1588

    Problem Description
    Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci". As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.
    Arithmetic progression: g(i)=k*i+b; We assume k and b are both non-nagetive integers.
    Fibonacci Numbers: f(0)=0 f(1)=1 f(n)=f(n-1)+f(n-2) (n>=2)
    The Gauss Fibonacci problem is described as follows: Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n The answer may be very large, so you should divide this answer by M and just output the remainder instead.
     
    Input
    The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M Each of them will not exceed 1,000,000,000.
     
    Output
    For each line input, out the value described above.
     
    Sample Input
    2 1 4 100
    2 0 4 100
     
    Sample Output
    21 12
     

    题目解析:

    用于构造斐波那契的矩阵为

    0,1

    1,1

    设这个矩阵为A。

    sum=f(b)+f(k+b)+f(2*k+b)+f(3*k+b)+........+f((n-1)*k+b)

    <=>sum=A^b+A^(k+b)+A^(2*k+b)+A^(3*k+b)+........+A^((n-1)*k+b)

    <=>sum=A^b+A^b*(A^k+A^2*k+A^3*k+.......+A^((n-1)*k))(1)

    设矩阵B为A^k;

    那么(1)式为

    sum=A^b+A^b*(B+B^2+B^3+......+B^(n-1));

    显然,这时候就可以用二分矩阵做了,括号内的就跟POJ 3233的形式一样了。

    代码如下:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <stack>
    #define inf 0x3f3f3f3f
    #define LL __int64//int就WA了
    using namespace std;
    struct ma
    {
        LL a[2][2];
    } init,res,B,C;
    int mod,k,b,n,K;
    void Init()
    {
        init.a[0][0]=0;
        init.a[0][1]=1;
        init.a[1][0]=1;
        init.a[1][1]=1;
    }
    ma Mult(ma x,ma y)
    {
        ma tmp;
        for(int i=0; i<2; i++)
        {
            for(int j=0; j<2; j++)
            {
                tmp.a[i][j]=0;
                for(int z=0; z<2; z++)
                {
                    tmp.a[i][j]=(tmp.a[i][j]+x.a[i][z]*y.a[z][j])%mod;
                }
            }
        }
        return tmp;
    }
    ma Pow(ma x,int K)
    {
        ma tmp;
        for(int i=0; i<2; i++)
        {
            for(int j=0; j<2; j++)
                tmp.a[i][j]=(i==j);
        }
        while(K!=0)
        {
            if(K&1)
                tmp=Mult(tmp,x);
            K>>=1;
            x=Mult(x,x);
        }
        return tmp;
    }
    ma Add(ma x,ma y)
    {
        ma tmp;
        for(int i=0; i<2; i++)
        {
            for(int j=0; j<2; j++)
            {
                tmp.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
            }
        }
        return tmp;
    }
    ma Sum(ma x,int K)
    {
        ma tmp,y;
        if(K==1)
            return x;
        tmp=Sum(x,K/2);
        if(K&1)
        {
            y=Pow(x,K/2+1);
            tmp=Add(Mult(y,tmp),tmp);
            tmp=Add(tmp,y);
        }
        else
        {
            y=Pow(x,K/2);
            tmp=Add(Mult(y,tmp),tmp);
        }
        return tmp;
    }
    /*另外一种写法
    matrix Sum(matrix x, int k) 

        if(k==1) return x; 
        if(k&1) 
            return Add(Sum(x,k-1),Pow(x,k));  //如果k是奇数,求x^k+sum(x,k-1)
        matrix tmp; 
        tmp=Sum(x,k>>1); 
        return Add(tmp,Mult(tmp,Pow(x,k>>1))); 
    }

    */
    int main() { while(scanf("%d%d%d%d",&k,&b,&n,&mod)!=EOF) { Init(); B=Pow(init,k); C=Pow(init,b); res=Sum(B,n-1); res=Mult(C,res); res=Add(C,res); printf("%I64d ",res.a[1][0]); } return 0; }
  • 相关阅读:
    apply()与call()的区别
    VS Code 配置vue开发环境
    settimeout 和 setinterval
    JAVA内存泄漏和内存溢出的区别和联系
    Oracle Distinct(过滤重复)用法
    Oracle Order By排序用法详解
    Oracle Select语句
    登陆权限--token的使用
    登陆权限--token 的生成和验证
    MySQL基础增删改查
  • 原文地址:https://www.cnblogs.com/zhangmingcheng/p/4133896.html
Copyright © 2011-2022 走看看