zoukankan      html  css  js  c++  java
  • TensorFlow经典案例4:实现logistic回归

    #TensorFlow实现Logistic 回归
    import tensorflow as tf
    
    #导入手写数字集
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    #学习参数
    learning_rate = 0.01
    training_epoches = 25
    batch_size = 100
    display_step = 1
    
    #构造图
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    prediction = tf.nn.softmax(tf.matmul(x,W) + b)
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(prediction),reduction_indices=1))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epoches):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            for i in range(total_batch):
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                _,c =sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys})
                avg_cost += c / total_batch
            if (epoch+1) % display_step == 0:
                print("Epoch:","%0.4d" %(epoch+1),"cost","{:.9f}".format(avg_cost))
        print("训练结束")
    
        correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.int32))
        print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
    

      

  • 相关阅读:
    macOS10.9+xcode6编译ffmpeg2.4.2 for ios
    [think in java]第12章 通过异常处理错误
    机房合作感受
    LeetCode 210. Course Schedule II(拓扑排序-求有向图中是否存在环)
    Java继承
    jQuery学习笔记之DOM操作、事件绑定(2)
    intellij IDEA常见操作
    log4j.properties配置详解
    jQuery学习笔记之概念(1)
    VC常用代码之创建进程
  • 原文地址:https://www.cnblogs.com/zhangshilin/p/7224658.html
Copyright © 2011-2022 走看看