zoukankan      html  css  js  c++  java
  • TensorFlow经典案例6:深度学习前传多层感知机

    经典案例多层感知机
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/",one_hot= True)
    
    learning_rate = 0.001
    training_epochs = 15
    batch_size = 100
    display_step = 1
    
    n_hidden_1 = 256 #第一层神经元的个数
    n_hidden_2 = 256 #第二层神经元的个数
    n_input = 784
    n_classes = 10   #分类的个数
    
    x = tf.placeholder("float",[None,784])
    y = tf.placeholder("float",[None,n_classes])
    
    #创建神经网络结构
    def multilayer_perceptron(x,weights,biases):
        layer_1 = tf.add(tf.matmul(x,weights['h1']),biases['b1'])
        layer_1 = tf.nn.relu(layer_1)
    
        layer_2 = tf.add(tf.matmul(layer_1,weights['h2']),biases['b2'])
        layer_2 = tf.nn.relu(layer_2)
    
        out_layer = tf.matmul(layer_2,weights['out']) + biases['out']
        return out_layer
    
    weigths = {
        'h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])),
        'h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_hidden_2,n_classes]))
    }
    
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    pred = multilayer_perceptron(x,weigths,biases)
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples / batch_size)
            for i in range(total_batch):
                batch_x,batch_y = mnist.train.next_batch(batch_size)
                _,c = sess.run([train_step,cost],feed_dict={x:batch_x,y:batch_y})
                avg_cost += c/total_batch
            if epoch % display_step == 0:
                print("Epoch:",'%04d' % (epoch+1),"cost=","{:.9f}".format(avg_cost))
        print("训练完毕")
        correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
        print("Accuracy:",accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
    

      

  • 相关阅读:
    2019-2020-1 20199314 《Linux内核原理与分析》 第六周作业
    编译内核及系统调用的坑之make menuconfig
    20199314 Linux内核原理与分析 第五周作业
    20199314 Linux内核原理与分析 第四周作业
    2019-2020-1 20199314 <Linux内核原理与分析>第三周作业
    2019-2020-1 20199314 <Linux内核原理与分析>第二周作业
    2019-2020-1 20199314 <Linux内核原理与分析>第一周作业
    简单单层前馈神经网络
    wait,waitpid学习测试
    2019-2020-1 20199307《Linux内核原理与分析》第八周作业
  • 原文地址:https://www.cnblogs.com/zhangshilin/p/7233015.html
Copyright © 2011-2022 走看看