经典案例多层感知机 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/",one_hot= True) learning_rate = 0.001 training_epochs = 15 batch_size = 100 display_step = 1 n_hidden_1 = 256 #第一层神经元的个数 n_hidden_2 = 256 #第二层神经元的个数 n_input = 784 n_classes = 10 #分类的个数 x = tf.placeholder("float",[None,784]) y = tf.placeholder("float",[None,n_classes]) #创建神经网络结构 def multilayer_perceptron(x,weights,biases): layer_1 = tf.add(tf.matmul(x,weights['h1']),biases['b1']) layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1,weights['h2']),biases['b2']) layer_2 = tf.nn.relu(layer_2) out_layer = tf.matmul(layer_2,weights['out']) + biases['out'] return out_layer weigths = { 'h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2,n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } pred = multilayer_perceptron(x,weigths,biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y)) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples / batch_size) for i in range(total_batch): batch_x,batch_y = mnist.train.next_batch(batch_size) _,c = sess.run([train_step,cost],feed_dict={x:batch_x,y:batch_y}) avg_cost += c/total_batch if epoch % display_step == 0: print("Epoch:",'%04d' % (epoch+1),"cost=","{:.9f}".format(avg_cost)) print("训练完毕") correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) print("Accuracy:",accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))