java线程类的源码分析阅读技巧;
首先阅读thread类重点关注一下几个问题;
1、start() ,启动一个线程是如何实现的?
2、java线程状态机的变化过程以及如何实现的?
3、
1、start方法的源码如下:
new Thread(Runnable);代码内部实际代码如下:
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
/** * Initializes a Thread. * * @param g the Thread group * @param target the object whose run() method gets called * @param name the name of the new Thread * @param stackSize the desired stack size for the new thread, or * zero to indicate that this parameter is to be ignored. * @param acc the AccessControlContext to inherit, or * AccessController.getContext() if null * @param inheritThreadLocals if {@code true}, inherit initial values for * inheritable thread-locals from the constructing thread */ private void init(ThreadGroup g, Runnable target, String name, long stackSize, AccessControlContext acc, boolean inheritThreadLocals) { if (name == null) { throw new NullPointerException("name cannot be null"); } this.name = name; Thread parent = currentThread(); SecurityManager security = System.getSecurityManager(); if (g == null) { /* Determine if it's an applet or not */ /* If there is a security manager, ask the security manager what to do. */ if (security != null) { g = security.getThreadGroup(); } /* If the security doesn't have a strong opinion of the matter use the parent thread group. */ if (g == null) { g = parent.getThreadGroup(); } } /* checkAccess regardless of whether or not threadgroup is explicitly passed in. */ g.checkAccess(); /* * Do we have the required permissions? */ if (security != null) { if (isCCLOverridden(getClass())) { security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION); } } g.addUnstarted(); this.group = g; this.daemon = parent.isDaemon(); this.priority = parent.getPriority(); if (security == null || isCCLOverridden(parent.getClass())) this.contextClassLoader = parent.getContextClassLoader(); else this.contextClassLoader = parent.contextClassLoader; this.inheritedAccessControlContext = acc != null ? acc : AccessController.getContext(); this.target = target; setPriority(priority); if (inheritThreadLocals && parent.inheritableThreadLocals != null) this.inheritableThreadLocals = ThreadLocal.createInheritedMap(parent.inheritableThreadLocals); /* Stash the specified stack size in case the VM cares */ this.stackSize = stackSize; /* Set thread ID */ tid = nextThreadID(); }
然后看start方法代码如下:
/** * Causes this thread to begin execution; the Java Virtual Machine * calls the <code>run</code> method of this thread. * <p> * The result is that two threads are running concurrently: the * current thread (which returns from the call to the * <code>start</code> method) and the other thread (which executes its * <code>run</code> method). * <p> * It is never legal to start a thread more than once. * In particular, a thread may not be restarted once it has completed * execution. * * @exception IllegalThreadStateException if the thread was already * started. * @see #run() * @see #stop() */ public synchronized void start() { /** * This method is not invoked for the main method thread or "system" * group threads created/set up by the VM. Any new functionality added * to this method in the future may have to also be added to the VM. * * A zero status value corresponds to state "NEW". */ if (threadStatus != 0) throw new IllegalThreadStateException(); /* Notify the group that this thread is about to be started * so that it can be added to the group's list of threads * and the group's unstarted count can be decremented. */ group.add(this); boolean started = false; try { start0(); started = true; } finally { try { if (!started) { group.threadStartFailed(this); } } catch (Throwable ignore) { /* do nothing. If start0 threw a Throwable then it will be passed up the call stack */ } } } private native void start0();
由此可见start方法的本质是调用本地方法start0()即进行的系统调用;
2、java线程的状态机的变化情况:重点关注 Thread中的一个静态枚举内部类,State 和Thread中的一个变量 threadStatus 的变化
threadStatus代码如下:
/* Java thread status for tools, * initialized to indicate thread 'not yet started' */ private volatile int threadStatus = 0;
但是奇怪的是发现在Thread类中并没有对threadStatus进行过赋值。故猜测原因是在native方法中对threadStatus进行赋值。因为该变量由volatile修饰,因此在native方法进行变量修改的同时Thread类中就能同时获取到该变量的最新值。
一下是完整的状态变化过程与状态代码
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
/** * A thread state. A thread can be in one of the following states: * <ul> * <li>{@link #NEW}<br> * A thread that has not yet started is in this state. * </li> * <li>{@link #RUNNABLE}<br> * A thread executing in the Java virtual machine is in this state. * </li> * <li>{@link #BLOCKED}<br> * A thread that is blocked waiting for a monitor lock * is in this state. * </li> * <li>{@link #WAITING}<br> * A thread that is waiting indefinitely for another thread to * perform a particular action is in this state. * </li> * <li>{@link #TIMED_WAITING}<br> * A thread that is waiting for another thread to perform an action * for up to a specified waiting time is in this state. * </li> * <li>{@link #TERMINATED}<br> * A thread that has exited is in this state. * </li> * </ul> * * <p> * A thread can be in only one state at a given point in time. * These states are virtual machine states which do not reflect * any operating system thread states. * * @since 1.5 * @see #getState */ public enum State { /** * Thread state for a thread which has not yet started. */ NEW, /** * Thread state for a runnable thread. A thread in the runnable * state is executing in the Java virtual machine but it may * be waiting for other resources from the operating system * such as processor. */ RUNNABLE, /** * Thread state for a thread blocked waiting for a monitor lock. * A thread in the blocked state is waiting for a monitor lock * to enter a synchronized block/method or * reenter a synchronized block/method after calling * {@link Object#wait() Object.wait}. */ BLOCKED, /** * Thread state for a waiting thread. * A thread is in the waiting state due to calling one of the * following methods: * <ul> * <li>{@link Object#wait() Object.wait} with no timeout</li> * <li>{@link #join() Thread.join} with no timeout</li> * <li>{@link LockSupport#park() LockSupport.park}</li> * </ul> * * <p>A thread in the waiting state is waiting for another thread to * perform a particular action. * * For example, a thread that has called <tt>Object.wait()</tt> * on an object is waiting for another thread to call * <tt>Object.notify()</tt> or <tt>Object.notifyAll()</tt> on * that object. A thread that has called <tt>Thread.join()</tt> * is waiting for a specified thread to terminate. */ WAITING, /** * Thread state for a waiting thread with a specified waiting time. * A thread is in the timed waiting state due to calling one of * the following methods with a specified positive waiting time: * <ul> * <li>{@link #sleep Thread.sleep}</li> * <li>{@link Object#wait(long) Object.wait} with timeout</li> * <li>{@link #join(long) Thread.join} with timeout</li> * <li>{@link LockSupport#parkNanos LockSupport.parkNanos}</li> * <li>{@link LockSupport#parkUntil LockSupport.parkUntil}</li> * </ul> */ TIMED_WAITING, /** * Thread state for a terminated thread. * The thread has completed execution. */ TERMINATED; } /** * Returns the state of this thread. * This method is designed for use in monitoring of the system state, * not for synchronization control. * * @return this thread's state. * @since 1.5 */ public State getState() { // get current thread state return sun.misc.VM.toThreadState(threadStatus); }