zoukankan      html  css  js  c++  java
  • 埃尔米特插值问题——用Python进行数值计算

      当插值的要求涉及到对插值函数导数的要求时,普通插值问题就变为埃尔米特插值问题。拉格朗日插值和牛顿插值的要求较低,只需要插值函数的函数值在插值点与被插函数的值相等,以此来使得在其它非插值节点插值函数的值能接近被插函数。但是有时候要求会更高,不仅要插值函数与被插函数在插值节点函数值相等,而且要求它们的导数相等。

      其实此时的情况并没有变得复杂,解决这个问题的思路与拉格朗日插值法的思路是相同的,不同点在于插值条件的约束函数增加了导数一项,原来由于0~n插值节点有n+1个插值节点,需要求出n+1个线性方程的解,(因为实打实的去求这样一个线性方程组的难度颇高)也就是需要构造一个不超过n+1-1 = n次的多项式,这里减1是因为n次多项式会解出n+1个解,还有一个常数。

      当每一个插值节点再有一个对于导数的约束条件时,此时线性方程变成了2*(n + 1)= 2n + 2个,也就是需要构造一个不超过2n+1次的多项式。

      构造出的埃尔米特插值函数应该是这样一个形式:

      可以看出就是再拉格朗日插值函数的基础上添加对导数的约束。

      构造埃尔米特插值的关键时构造基函数

      如何构造这两个基函数我并不了解,但是可以想办法网上凑,只需要他们满足以下约束即可:

      

      我在这里贴一个满足要求的

      

      其中为拉格朗日插值基函数的平方。

      将以上两个基函数带入埃尔米特插值多项式便得到了插值函数。

      开始贴代码:

      首先贴的是拉格朗日插值基函数:

      

    """
    @brief: 获得拉格朗日插值基函数 
    @param: xi      xi为第i个插值节点的横坐标
    @param: x_set   整个插值节点集合
    @return: 返回值为参数xi对应的插值基函数 
    """
    def get_li(xi, x_set = []):
        def li(Lx):
            W = 1; c = 1
            for each_x in x_set:
                if each_x == xi:
                    continue
                W = W * (Lx - each_x)
            
            for each_x in x_set:
                if each_x == xi:
                    continue
                c = c * (xi - each_x)
                
            # 这里一定要转成float类型,否则极易出现严重错误. 原因就不说了(截断误差)
            return W / float(c)     
        return li
    

      

      接着根据插值节点获得埃尔米特插值多项式需要的两个基函数:

      

    """
    @brief: 获得埃尔米特插值基函数α(x)   notice: 非求导部分基函数
    @param: xi      xi为第i个插值节点的横坐标
    @param: x_set   整个插值节点集合
    @return: 返回值为参数xi对应的插值基函数 
    """
    
    def get_basis_func_alpha(xi, x_set = []):
        
        def basis_func_alpha(x):
            tmp_sum = 0
            for each_x in x_set:
                if each_x == xi:
                    continue
                tmp_sum = tmp_sum + 1/float(xi - each_x)
                
            return (1 + 2*(xi-x) * tmp_sum) * ((get_li(xi, x_set))(x)) ** 2
        
        return basis_func_alpha
    
    
    
    """
    @brief: 获得埃尔米特插值基函数β(x)   notice: 求导部分基函数
    @param: xi      xi为第i个插值节点的横坐标
    @param: x_set   整个插值节点集合
    @return: 返回值为参数xi对应的插值基函数 
    """
    def get_basis_func_beta(xi, x_set = []):   
        return lambda x : (x - xi) * ((get_li(xi, x_set))(x)) ** 2
        
    

      最后便可以构造埃尔米特插值函数了:

      

    """
    @brief: 获得埃尔米特插值函数
    @param: x       插值节点的横坐标集合
    @param: fx      插值节点的纵坐标集合  
    @param: deriv   插值节点的导数集合
    @return: 参数所指定的插值节点集合对应的插值函数
    notice:
        经过对拉格朗日插值法, 牛顿插值法, 埃尔米特插值法的测试发现, 内插效果很好, 
        外插基本无法使用,误差极大(不能叫误差, 应该叫错误).
    """ 
    def get_Hermite_interpolation(x = [], fx = [], deriv = []):  
        set_of_func_alpha = []  # α(x)基函数集合
        set_of_func_beta = []   # β(x)基函数集合
        for each in x:          # 获得每个插值点的基函数
            tmp_func = get_basis_func_alpha(each, x)
            set_of_func_alpha.append(tmp_func)      # 将集合x中的每个元素对应的插值基函数保存
            tmp_func = get_basis_func_beta(each, x)
            set_of_func_beta.append(tmp_func)       # 将集合x中的每个元素对应的插值基函数保存
            
        def Hermite_interpolation(Hx):
            result = 0
            for index in range(len(x)):
                result = result + fx[index]*set_of_func_alpha[index](Hx) + deriv[index]*set_of_func_beta[index](Hx)   #根据根据拉格朗日插值法计算Lx的值
            return result
                
        return Hermite_interpolation    
    

        下面看一下效果:

      

      对以上几个插值节点进行插值后获得了如下效果:

      

      效果非常棒。

      以上图像的测试代码如下:

      

    """
    demo:
    """
    if __name__ == '__main__':   
    
        ''' 插值节点, 这里用二次函数生成插值节点,每两个节点x轴距离位10 '''
        import math
        sr_x = [(i * math.pi) + (math.pi / 2) for i in range(-3, 3)]
        sr_fx = [math.sin(i) for i in sr_x]
        deriv = [0 for i in sr_x]                           # 导数都为 0
        Hx = get_Hermite_interpolation(sr_x, sr_fx, deriv)  # 获得插值函数
        tmp_x = [i * 0.1 * math.pi for i in range(-20, 20)] # 测试用例
        tmp_y = [Hx(i) for i in tmp_x]                      # 根据插值函数获得测试用例的纵坐标
            
        ''' 画图 '''
        import matplotlib.pyplot as plt
        plt.figure("play")
        ax1 = plt.subplot(211)
        plt.sca(ax1)
        plt.plot(sr_x, sr_fx, linestyle = ' ', marker='o', color='b')
        plt.plot(tmp_x, tmp_y, linestyle = '--', color='r')
        plt.show()
    

      通过观察以上的原理观察,实际上在以后遇到更高要求的插值问题时,比如要求插值函数与被插函数三次,四次导数相等,我们也是可以利用类似的方法,只是构造相应的基函数可能需要一番功夫,计算复杂度也会上升。

  • 相关阅读:
    ovs QOS
    OpenvSwitch端口镜像
    MyCat入门指南
    Mycat跨分片Join
    MyCAT 命令行监控
    MyCat的分片规则
    FreeMarker初探--介绍
    FreeMarker初探--安装FreeMarker
    linux 安装配置zookeeper
    Maven 环境搭建及相应的配置
  • 原文地址:https://www.cnblogs.com/zhangte/p/6102302.html
Copyright © 2011-2022 走看看