zoukankan      html  css  js  c++  java
  • [ 具体数学 ] 3:和式与封闭式

    成套方法

    解决将和式转为封闭式的方法

    命题

    \(\sum_{k=1}^nk\)转为封闭式

    求解

    方法:成套方法

    1. 转为递归式

    \(S(n)=\sum_{k=1}^nk\)
    不难看出,\(S(n)=S(n-1)+n\)

    1. 一般化

    \(R(n)\)\(S(n)\)的一般形式
    \(R(0)=\alpha \qquad R(n)=R(n-1)+\beta n+\gamma\)

    (1) 令\(R(n)=1\)

    \[\therefore R(0)=1 \]

    \[\therefore \alpha = 1 \]

    \[\because R(n)=R(n-1)+\beta n+\gamma \]

    \[\therefore 1=1+\beta n + \gamma \]

    \[ \left\{ \begin{aligned} \alpha = 1 \\ \beta = 0 \\ \gamma = 0 \end{aligned} \right. \]

    (2) 令\(R(n)=n\)

    \[\therefore R(0) = 0 \]

    \[\therefore \alpha = 0 \]

    \[\because R(n)=R(n-1)+\beta n+\gamma \]

    \[\therefore n = (n-1)+\beta n + \gamma \]

    \[ \left\{ \begin{aligned} \alpha = 0 \\ \beta = 0 \\ \gamma = 1 \end{aligned} \right. \]

    (3) 令\(R(n) = n^2\)

    \[\therefore R(0) = 0 \]

    \[\therefore \alpha = 0 \]

    \[\because R(n)=R(n-1)+\beta n+\gamma \]

    \[\therefore n^2 = (n-1)^2+\beta n + \gamma \]

    \[\therefore n^2 = n^2 - 2n + 1+\beta n + \gamma \]

    \[\therefore -1 =(\beta - 2) n + \gamma \]

    \[ \left\{ \begin{aligned} \alpha = 0 \\ \beta = 2 \\ \gamma = -1 \end{aligned} \right. \]

    3.计算系数

    \(R(n)=A(n)\alpha + B(n)\beta + C(n)\gamma\)

    (1) 当\(R(n) = 1\)时:

    \[\because\left\{ \begin{aligned} \alpha = 1 \\ \beta = 0 \\ \gamma = 0 \end{aligned} \right. \]

    \[\therefore A(n) = 1 \]

    (2) 当\(R(n) = n\)时:

    \[\because\left\{ \begin{aligned} \alpha = 0 \\ \beta = 0 \\ \gamma = 1 \end{aligned} \right. \]

    \[\therefore C(n) = n \]

    (3) 当\(R(n) = n^2\)时:

    \[ \left\{ \begin{aligned} \alpha = 0 \\ \beta = 2 \\ \gamma = -1 \end{aligned} \right. \]

    \[\therefore 2B(n) - C(n) = n^2 \]

    综上:

    \[ \left\{ \begin{aligned} A(n) = 1 \\ C(n) = n \\ 2B(n) - C(n) = n^2 \end{aligned} \right. \]

    解得

    \[ \left\{ \begin{aligned} A(n) = 1 \\ B(n) = \frac{n\cdot (n+1)}{2} \\ C(n) = n \end{aligned} \right. \]

    4.具体化

    \[S(n) = S(n-1) + n \]

    \(P(n)\)为当\(\beta = 1, \gamma = 0\)\(R(n)\)的值

    \[\therefore P(n) = P(n-1) + n = S(n) \]

    \(\therefore S(n)\)为当\(\beta = 1, \gamma = 0\)\(R(n)\)的值

    \[\therefore S(n) = B(n) \]

    \[\therefore S(n) = \frac{n \cdot (n+1)}{2} \]

  • 相关阅读:
    Thinkphp下实现D函数用于实例化Model格式
    Thinkphp3.2下导入所需的类库 同java的Import 本函数有缓存功能
    Thinkphp下记录和统计时间(微秒)和内存使用情况
    python打造seo必备工具-自动查询排名
    Python爬虫爬企查查数据
    解决Android8.0系统应用打开webView报错
    团队冲刺第七天个人博客
    团队冲刺第六天个人博客
    团队冲刺第五天个人博客
    团队冲刺第四天个人博客
  • 原文地址:https://www.cnblogs.com/zhangtianli/p/12233360.html
Copyright © 2011-2022 走看看