证明: 考虑部分和
egin{align*}
sum_{k=1}^{n}(-1)^{k}frac{ln k}{k}&=2sum_{k=1}^{[frac{n}{2}]}frac{ln 2k}{2k}-sum_{k=1}^{n}frac{ln k}{k}\
&=ln 2sum_{k=1}^{[frac{n}{2}]}frac{1}{k}-sum_{[frac{n}{2}]+1}^{n}frac{ln k}{k}
end{align*}
设 $f(x)=frac{ln x}{x}$, 可知当$x >e$时为单调递减且趋于$0$函数,有估计
$$sum_{[frac{n}{2}]+1}^{n}int_{k}^{k+1}f(x)dx leq sum_{[frac{n}{2}]+1}^{n}f(k)leq sum_{[frac{n}{2}]+1}^{n}int_{k-1}^{k}f(x)dx$$
计算得
$$sum_{[frac{n}{2}]+1}^{n}f(k)-frac{ln 2}{2}ln(frac{n^2}{2})=o(1)$$
所以原式
$$sum_{k=1}^{infty}frac{(-1)^{k}ln k}{k}=ln 2 lim_{n o infty}left(sum_{k=1}^{[n/2]}frac{1}{k}-ln(n/2)-frac{ln 2}{2}
ight)=ln 2 (gamma-frac{1}{2}ln 2)$$