zoukankan      html  css  js  c++  java
  • 证明定积分等式

    证明:

    $$int_{0}^{frac{pi}{2}}ln (1+cos x)dx=-frac{pi}{2}ln 2 +int_{0}^{frac{pi}{2}}frac{x}{sin x}dx$$

    Proof.

    egin{align*}

    int_{0}^{frac{pi}{2}}ln (1+cos x) dx &=int_{0}^{frac{pi}{2}}ln(sin x (csc x + cot x))dx\

    &=int_{0}^{frac{pi}{2}} ln sin x dx +int_{0}^{frac{pi}{2}}ln (csc x +cot x)dx\

    &:=I_{1}+I_{2}

    end{align*}

    计算$I_{1}$和$I_{2}$

    egin{align*}

    int_{0}^{frac{pi}{2}}ln sin x dx+int_{0}^{frac{pi}{2}}ln cos x dx &=int_{0}^{frac{pi}{2}}ln frac{sin 2x}{2}dx\

    &=-frac{pi ln 2}{2}+frac{1}{2}int_{0}^{pi}ln sin x dx\

    &=-frac{pi ln 2}{2}+int_{0}^{frac{pi}{2}}ln cos x dx

    end{align*}

    从而 $I_{1}=-frac{pi ln 2}{2}$, $I_{2}$分部积分处理即可。

  • 相关阅读:
    DAY 223 GIT
    swooleHTTP
    swooleWebSocket
    swooleUDP
    swoole异步MySql
    swooleTCP
    谈谈继承的局限性
    也谈过程决定质量
    谁该为参数负责
    使用function改进设计
  • 原文地址:https://www.cnblogs.com/zhangwenbiao/p/5149041.html
Copyright © 2011-2022 走看看