zoukankan      html  css  js  c++  java
  • 阿贝尔分布求和法的应用(一)

    1. (和差变换公式)设$m<n$.则
    $$sum_{k=m}^{n}(A_{k}-A_{k-1})b_{k}=A_{n}b_{n}-A_{m-1}b_{m}+sum_{k=m}^{n-1}A_{k}(b_{k}-b_{k+1})$$
    证明:直接计算即可。
    egin{align*}
    sum_{k=m}^{n}(A_{k}-A_{k-1})b_{k}&=sum_{k=m}^{n}A_{k}b_{k}-sum_{k=m}^{n}A_{k-1}b_{k}\
    &=sum_{k=m}^{n}A_{k}b_{k}-sum_{m-1}^{n-1}A_{k}b_{k+1}\
    &=(A_{n}b_{n}-A_{m-1}b_{m})+sum_{k=m}^{n-1}A_{k}(b_{k}-b_{k+1})
    end{align*}
    2. (分部求和法)设$s_{k}=a_{1}+a_{2}+cdots+a_{k},(k=1,2,cdots,n)$.则
    $$sum_{k=1}^{n}a_{k}b_{k}=s_{n}b_{n}+sum_{k=1}^{n-1}s_{k}(b_{k}-b_{k+1})$$
    证明:补充定义$s_{0}=0$,利用第一题的结论即可。令本命题和第一题等价。
    不妨设$m<n$,由题知
    $$sum_{k=1}^{n}a_{k}b_{k}=s_{n}b_{n}+sum_{k=1}^{n-1}s_{k}(b_{k}-b_{k+1})$$
    $$sum_{k=1}^{m-1}a_{k}b_{k}=s_{m-1}b_{m-1}+sum_{k=1}^{m-2}s_{k}(b_{k}-b_{k+1})$$
    两式相减得
    $$sum_{k=m}^{n}a_{k}b_{k}=s_{n}b_{n}-s_{m-1}b_{m-1}+sum_{k=m-1}^{n-1}s_{k}(b_{k}-b_{k+1})$$\
    3. 设$s_{n}=a_{1}+a_{2}+cdots+a_{n} o s(n o infty)$,则
    $$sum_{k=1}^{n}a_{k}b_{k}=sb_{1}+(s_{n}-s)b_{n}-sum_{k=1}^{n-1}(s_{k}-s)(b_{k+1}-b_{k})$$
    证明:由分布求和知
    $$sum_{k=1}^{n}a_{k}b_{k}=s_{n}b_{n}-sum_{k=1}^{n-1}s_{k}(b_{k+1}-b_{k})$$

    $$s(b_{n}-b_{1})=ssum_{k=1}^{n-1}(b_{k+1}-b_{k})$$
    两式相减即得结论。
    4. (阿贝耳引理)若对一切$n=1,2,3,cdots$而言
    $$b_{1}geq b_{2}geq cdots geq b_{n}geq 0$$
    $$mleq a_{1}+a_{2}+cdot+a_{n}leq M$$
    则有
    $$b_{1}mgeq a_{1}b_{1}+a_{2}b_{2}+cdots+a_{n}b_{n}leq b_{1}M$$
    证明:设$s_{k}=a_{1}+a_{2}+cdots+a_{k},(k=1,2,cdots,n)$.由于$b_{k}geq 0,b_{k}-b_{k+1}geq 0$则
    $$sum_{k=1}^{n}a_{k}b_{k}=s_{n}b_{n}+sum_{k=1}^{n-1}s_{k}(b_{k}-b_{k+1})leq b_{n}M+Msum_{k=1}^{n-1}(b_{k}-b_{k+1})=b_{1}M$$
    左边不等式证明类似
    $$sum_{k=1}^{n}a_{k}b_{k}=s_{n}b_{n}+sum_{k=1}^{n-1}s_{k}(b_{k}-b_{k+1})geq b_{n}m+msum_{k=1}^{n-1}(b_{k}-b_{k+1})=b_{1}m$$
    5. 设$a_{1},a_{2},cdots,a_{n},b_{1},b_{2},cdots,b_{n}$为任意实数或复数,又设
    $$A=max {|a_{1}|,|a_{1}+a_{2}|,cdots,|a_{1}+a_{2}+cdots+a_{n}|}$$

    $$left|sum_{k=1}^{n}a_{k}b_{k} ight|leq A left{sum_{k=1}^{n-1}|b_{k+1}-b_{k}|+|b_{n}| ight}$$
    证明:使用绝对值不等式放缩即可。
    $$left|sum_{k=1}^{n}a_{k}b_{k} ight|leq |s_{n}| imes|b_{n}|+sum_{k=1}^{n-1}|s_{k}| imes |b_{k}-b_{k+1}|leq A left{sum_{k=1}^{n-1}|b_{k+1}-b_{k}|+|b_{n}| ight}$$
    6. (Kronecker) 设$varphi(n)>0,varphi(n)uparrow infty(n o infty)$.又设$sum_{n=1}^{infty}a_{n}$收敛. 则
    $$sum_{k=1}^{n}a_{k}varphi(k)=o(varphi(n)),(n o infty)$$
    证明:设$s_{n} o s (n o infty)$那么对任意$varepsilon>0$存在$m>0,n>m$时
    $$|s_{n}-s|<varepsilon$$
    由分部求和法知(重复第二题第三题)步骤
    egin{align*}
    sum_{k=1}^{n}a_{k}b_{k}&=svarphi(1)+(s_{n}-s)varphi(n)-sum_{k=1}^{n-1}(s_{k}-s)(varphi(k+1)-varphi(k))\
    &=O(1)+o(varphi(n))-sum_{k=1}^{m}(s_{k}-s)(varphi(k+1)-varphi(k))-sum_{k=m+1}^{n-1}(s_{k}-s)(varphi(k+1)-varphi(k))\
    &leq O(1)+o(varphi(n))+varepsilon (varphi(n)-varphi(m+1))
    end{align*}
    由于$varphi(n) o infty$,知$sum_{k=1}^{n}a_{k}varphi(k)=o(varphi(n)),(n o infty)$
    7. 设$varphi(n)downarrow 0(n o infty)$,且$sum_{n=1}^{infty}a_{n}varphi(n)$为收敛,则
    $$lim_{n oinfty}(a_{1}+a_{2}+cdots+a_{n})varphi(n)=0$$
    证明:将$a_{n}varphi(n)$看作命题6中的$a_{n}$,将$varphi^{-1}(n)$看作命题6中的$varphi(n)$,命题得证。
    extbf{另证}: 直接利用阿贝耳引理证明.任意给定$varepsilon>0$,由Cauchy收敛准则知,存在$N$,$n>N$时
    $$-frac{varepsilon}{2}<a_{N}varphi(N)+a_{N+1}varphi{N+1}+cdots+a_{n}varphi(n)<frac{varepsilon}{2}$$
    又有单调递减非负列
    $$varphi^{-1}(n)geq varphi^{-1}(n-1)geq cdotsgeqvarphi^{-1}(N)>0$$
    重新定义序列,使用阿贝耳引理命题4,即得
    $$|a_{N}+a_{N+1}+cdot+a_{n}|<varphi^{-1}(n)frac{varepsilon}{2}$$

    $$|(a_{N}+a_{N+1}+cdot+a_{n})varphi(n)|<varphi^{-1}(n)frac{varepsilon}{2}$$
    由于$varphi(n) o 0,n o infty$
    $$limsup|(a_{1}+cdots+a_{N-1}+a_{N}+cdots+a_{n})varphi(n)|leq 0+frac{varepsilon}{2}$$
    命题得证.
    8.(Dirichlet) 设$sigma>0$,则下列的狄利克雷级数
    $$a_{1}cdot 1^{-sigma}+a_{2}cdot 2^{-sigma}+a_{2}cdot 3^{-sigma}+cdots+a_{n}cdot n^{-sigma}+cdots$$
    收敛时,必有
    $$lim_{n oinfty}(a_{1}+a_{2}+cdots+a_{n})n^{-sigma}=0$$
    证明:此命题是命题7的特例。
    9. 设${z_{n}}_{1}^{infty}$为任意一个复数列而
    $$sum_{n=1}^{infty}|z_{n+1}^{-1}-z_{n}^{-1}|=infty$$
    又设级数$sum_{n=1}^{infty}a_{n}z_{n}$为收敛,则必有
    $$lim_{N oinfty}left(sum_{n=1}^{N}a_{n} ight)left(sum_{n=1}^{N}|z_{n+1}^{-1}-z_{n}^{-1}| ight)^{-1}=0$$
    证明:此类题目都是对和式$|sum a_{n}|$作估计,设$s_{n}=sum_{k=1}^{n}a_{k}z_{k},s_{n} o s (n o infty)$, 则有估计
    egin{align*}
    left|sum_{n=1}^{N}a_{n} ight|&=left|sum_{n=1}^{N}left(a_{n}z_{n} ight)z_{n}^{-1} ight|\
    &=left|sum_{n=1}^{N}(s_{n}-s_{n-1})z_{n}^{-1} ight|\
    &=left|sum_{n=1}^{N}s_{n}z_{n}^{-1}-sum_{n=1}^{N}s_{n-1}z_{n}^{-1} ight|\
    &=left|s_{N}z_{N}^{-1}+sum_{n=1}^{N-1}s_{n}(z_{n}^{-1}-z_{n+1}^{-1}) ight|\
    &=left|s_{N}z_{N+1}^{-1}+sum_{n=1}^{N}s_{n}(z_{n}^{-1}-z_{n+1}^{-1}) ight|\
    &=left|(s_{N}-s)z_{N+1}^{-1}+s z_{1}^{-1}+sum_{n=1}^{N}(s_{n}-s)(z_{n}^{-1}-z_{n+1}^{-1}) ight|
    end{align*}
    由$lim_{N o infty}s_{N}-s=0$知,存在$m$,当$N>m$时,$|s_{n}-s|<varepsilon$
    因此,上述等式右边可放缩
    egin{align*}
    R&leq left|(s_{N}-s)z_{N+1}^{-1}) ight|+left|sz_{1}^{-1} ight|+left|sum_{n=1}^{m}(s_{n}-s)(z_{n}^{-1}-z_{n+1}^{-1}) ight|+left|sum_{n=m}^{N}(s_{n}-s)(z_{n}^{-1}-z_{n+1}^{-1}) ight|\
    &leqvarepsilon |z_{N+1}^{-1}|+left|sz_{1}^{-1} ight|+varepsilon left|z_{n}^{-1}-z_{n+1}^{-1} ight|+left|sum_{n=1}^{m}(s_{n}-s)(z_{n}^{-1}-z_{n+1}^{-1}) ight|\
    &=varepsilon |z_{N+1}^{-1}|+varepsilonsum_{m}^{N}left|z_{n}^{-1}-z_{n+1}^{-1} ight|+M
    end{align*}
    因此,
    egin{align*}
    frac{left|sum_{n=1}^{N}a_{n} ight|}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}&leqvarepsilon cdot frac{|z_{n+1}^{-1}|}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}+frac{M}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}+varepsilon cdot frac{sum_{m}^{N}left|z_{n}^{-1}-z_{n+1}^{-1} ight|}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}\
    &leq varepsilon+frac{M}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}+varepsilon
    end{align*}
    从而
    $$limsup frac{left|sum_{n=1}^{N}a_{n} ight|}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}leq 2varepsilon$$
    由于$varepsilon$为任意数
    $$limsup frac{left|sum_{n=1}^{N}a_{n} ight|}{sum_{n=1}^{N}left|z_{n+1}^{-1}-z_{n}^{-1} ight|}=0$$
    证明方法: 阿贝尔分部求和法+分段估计+上极限。
    10. 设当$k=1,2,3,cdots$时,有
    $$b_{k}geq b_{k+1},frac{1}{2}(b_{k}+b_{k+1})geq b_{k+1}$$
    并且
    $$mleq s_{1}+s_{2}+cdots+s_{k}leq M$$
    其中$s_{k}=a_{1}+a_{2}+cdots+a_{k}$.则有下列不等式成立
    $$m(b_{1}-b_{2})+s_{n}b_{n}<sum_{k=1}^{n}a_{k}b_{k}<M(b_{1}-b_{2})+s_{n}b_{n}$$
    证明: 设
    $$M_{n}=sum_{k=1}^{n}s_{k},\, ilde{b}_{k}=b_{k}-b_{k+1}$$
    由$b_{k}+b_{k+2}geq 2b_{k+1}$易知$ ilde{b}_{k}geq ilde{b}_{k+1}$.由分布求和公式
    egin{align*}
    sum_{k=1}^{n}a_{k}b_{k}&=s_{n}b_{n}+sum_{k=1}^{n-1}s_{k}(b_{k}-b_{k+1})\
    &=s_{n}b_{n}+sum_{k=1}^{n-1}s_{k} ilde{b}_{k}\
    &=s_{n}b_{n}+M_{n-1} ilde{b}_{n-1}+sum_{k=1}^{n-2}M_{k}( ilde{b}_{k}- ilde{b}_{k+1})\
    &leq s_{n}b_{n}+M ilde{b}_{n-1}+Msum_{k=1}^{n-2}( ilde{b}_{k}- ilde{b}_{k+1})\
    &=s_{n}b_{n}+(b_{1}-b_{2})M
    end{align*}
    左边不等式证明类似。
    11.设$N$为一固定的大整数,$a_{1},a_{2},cdots,a_{N},b_{1},b_{2},cdots,b_{N}$为任意两组常数. 今定义$b_{k}=0(k>N)$以及
    $$Delta^{m}b_{k}=Delta^{m-1}b_{k+1}-Delta^{m-1}b_{k},\, Delta b_{k}=b_{k+1}-b_{k}$$
    $$s_{k}^{(m)}=sum_{ u=1}^{k}s_{ u}^{(m-1)},s_{k}^{(1)}=a_{1}+a_{2}+cdots+a_{k}$$
    则有下列恒等式成立:
    $$sum_{k=1}^{N}a_{k}b_{k}=(-1)^{m}sum_{k=1}^{N}s_{k}^{(m)}Delta^{m}b_{k}$$
    证明:反复利用分布求和公式可得
    egin{align*}
    sum_{k=1}^{N}a_{k}b_{k}&=s_{N}b_{N}+sum_{k=1}^{N-1}s_{k}left(-Delta b_{k} ight)\
    &=s_{N}b_{N}+s_{N-1}^{(2)}left(-Delta b_{N-1} ight)+sum_{k=1}^{N-2}s_{k}^{2}left(Delta^{2} b_{k} ight)\
    &=s_{N}^{(1)}b_{N}+s_{N-1}^{(2)}left(-Delta b_{N-1} ight)+s_{N-2}^{(3)}left(Delta^{2} b_{N-2} ight)+cdots+(-1)^{N-1}s_{1}^{(N)}Delta^{N-1}b_{1}\
    &=sum_{k=1}^{N}(-1)^{k-1}s_{N-k+1}^{(k)}Delta^{k-1}b_{N-k+1}
    end{align*}

    11.设$N$为一固定的大整数,$a_{1},a_{2},cdots,a_{N},b_{1},b_{2},cdots,b_{N}$为任意两组常数. 今定义$b_{k}=0(k>N)$以及
    $$Delta^{m}b_{k}=Delta^{m-1}b_{k+1}-Delta^{m-1}b_{k},\, Delta b_{k}=b_{k+1}-b_{k}$$
    $$s_{k}^{(m)}=sum_{ u=1}^{k}s_{ u}^{(m-1)},s_{k}^{(1)}=a_{1}+a_{2}+cdots+a_{k}$$
    则有下列恒等式成立:
    $$sum_{k=1}^{N}a_{k}b_{k}=(-1)^{m}sum_{k=1}^{N}s_{k}^{(m)}Delta^{m}b_{k}$$
    证明:反复利用分布求和公式可得
    egin{align*}
    sumlimits_{k=1}^{N}a_{k}b_{k}&=s_{N}b_{N}+sumlimits_{k=1}^{N-1}s_{k}left(-Delta b_{k} ight)\
    &=s_{N}b_{N}+s_{N-1}^{(2)}left(-Delta b_{N-1} ight)+sumlimits_{k=1}^{N-2}s_{k}^{2}left(Delta^{2} b_{k} ight)\
    &=s_{N}^{(1)}b_{N}+s_{N-1}^{(2)}left(-Delta b_{N-1} ight)+s_{N-2}^{(3)}left(Delta^{2} b_{N-2} ight)+cdots+(-1)^{N-1}s_{1}^{(N)}Delta^{N-1}b_{1}\
    &=sumlimits_{k=1}^{N}(-1)^{k-1}s_{N-k+1}^{(k)}Delta^{k-1}b_{N-k+1}
    end{align*}
    12. 设$a_{k}>0,b_{k}>0,$而${v_{k}}$为单调下降的正数列. 又设
    $$H=maxleft(frac{B_{0}}{A_{0}},frac{B_{1}}{A_{1}},cdots,frac{B_{n}}{A_{n}} ight),\,\,h=minleft(frac{B_{0}}{A_{0}},frac{B_{1}}{A_{1}},cdots,frac{B_{n}}{A_{n}} ight) $$
    $$H_{m}=maxleft(frac{B_{m}}{A_{m}},frac{B_{m+1}}{A_{m+1}},cdots,frac{B_{n}}{A_{n}} ight),\,\,h_{m}=minleft(frac{B_{m}}{A_{m}},frac{B_{m+1}}{A_{m+1}},cdots,frac{B_{n}}{A_{n}} ight)$$
    此处$A_{k}=a_{1}+a_{2}+cdots+a_{k},\, B_{k}=b_{1}+b_{2}+cdots+b_{k}.$ 则有下列不等式成立:
    $$h_{m}+(h-h_{m})frac{sumlimits_{k=0}^{m}a_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}leq frac{sumlimits_{k=0}^{n}b_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}leq H_{m}+(H-H_{m})frac{sumlimits_{k=0}^{m}a_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}$$
    证明: 分部求和法+分段估计, 只证右边不等式左边不等式证明类似.
    egin{align*}
    frac{sumlimits_{k=0}^{n}b_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}-H_{m}&=frac{sumlimits_{k=0}^{m-1}B_{k}(v_{k}-v_{k+1})+sumlimits_{k=m}^{n}B_{k}(v_{k}-v_{k+1})+B_{n}v_{n}}{sumlimits_{k=0}^{n}A_{k}(v_{k}-v_{k+1})+A_{n}v_{n}}-H_{m}\
    &leq frac{Hsumlimits_{k=0}^{m-1}A_{k}(v_{k}-v_{k+1})+H_{m}sumlimits_{k=m}^{n}A_{k}(v_{k}-v_{k+1})+H_{m}A_{n}v_{n}}{sumlimits_{k=0}^{n}A_{k}(v_{k}-v_{k+1})+A_{n}v_{n}}-H_{m}\
    &=frac{(H-H_{m})sumlimits_{k=0}^{m-1}A_{k}(v_{k}-v_{k+1})}{sumlimits_{k=0}^{n}A_{k}(v_{k}-v_{k+1})+A_{n}v_{n}}\
    &leq (H-H_{m})frac{sumlimits_{k=0}^{m}a_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}
    end{align*}
    13. 保留命题12的全部假设,但将${v_{n}}$改为单调上升的的数列. 则有
    $$H_{m}-frac{(H_{m}-h_{m})A_{n}v_{n}+(H-H_{m})A_{m}v_{m}}{sumlimits_{k=0}^{n}a_{k}v_{k}}leq frac{sumlimits_{k=0}^{n}b_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}leq h_{m}+frac{(H_{m}-h_{m})A_{n}v_{n}+(h_{m}-h)A_{m}v_{m}}{sumlimits_{k=0}^{n}a_{k}v_{k}}$$
    证明: 分部求和法+分段估计, 只证右边不等式左边不等式证明类似.
    egin{align*}
    frac{sumlimits_{k=0}^{n}b_{k}v_{k}}{sumlimits_{k=0}^{n}a_{k}v_{k}}-h_{m}&=frac{sumlimits_{k=0}^{m-1}B_{k}(v_{k}-v_{k+1})+sumlimits_{k=m}^{n}B_{k}(v_{k}-v_{k+1})+B_{n}v_{n}}{sumlimits_{k=0}^{n}A_{k}(v_{k}-v_{k+1})+A_{n}v_{n}}-h_{m}\
    &=frac{sumlimits_{k=0}^{m-1}(B_{k}-h_{m}A_{k})(v_{k}-v_{k+1})+sumlimits_{k=m}^{n}(B_{k}-h_{m}A_{k})(v_{k}-v_{k+1})+(B_{n}-h_{m}A_{n})v_{n}}{sumlimits_{k=0}^{n}A_{k}(v_{k}-v_{k+1})+A_{n}v_{n}}\
    &leqfrac{(H_{m}-h_{m})A_{n}v_{n}+(h_{m}-h)A_{m}v_{m}}{sumlimits_{k=0}^{n}a_{k}v_{k}}
    end{align*}

  • 相关阅读:
    Python---面向对象---案例
    Python---面向对象---龟鱼游戏
    man lspci
    Python---面向对象---修学校
    Python---面向对象编程---自定义列表和集合操作类
    Python---面向对象编程
    Python---常用的内置模块
    man hdparm
    man lsof
    linux中文man手册安装
  • 原文地址:https://www.cnblogs.com/zhangwenbiao/p/5654968.html
Copyright © 2011-2022 走看看