zoukankan      html  css  js  c++  java
  • tensorflow(三十七):卷积神经网络——CIFAR100与VGG实战

    一、网络结构

     二、代码

    import  os
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    import  tensorflow as tf
    from    tensorflow.keras import layers, optimizers, datasets, Sequential
    
    tf.random.set_seed(2345)
    
    conv_layers = [ # 5 units of conv + max pooling
        # unit 1
        layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    
        # unit 2
        layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    
        # unit 3
        layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    
        # unit 4
        layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    
        # unit 5
        layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
        layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
    
    ]
    
    
    
    def preprocess(x, y):
        # [0~1]
        x = tf.cast(x, dtype=tf.float32) / 255.
        y = tf.cast(y, dtype=tf.int32)
        return x,y
    
    
    (x,y), (x_test, y_test) = datasets.cifar100.load_data()
    y = tf.squeeze(y, axis=1)
    y_test = tf.squeeze(y_test, axis=1)
    print(x.shape, y.shape, x_test.shape, y_test.shape)
    
    
    train_db = tf.data.Dataset.from_tensor_slices((x,y))
    train_db = train_db.shuffle(1000).map(preprocess).batch(128)
    
    test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
    test_db = test_db.map(preprocess).batch(64)
    
    sample = next(iter(train_db))
    print('sample:', sample[0].shape, sample[1].shape,
          tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
    
    
    def main():
    
        # [b, 32, 32, 3] => [b, 1, 1, 512]
        conv_net = Sequential(conv_layers)
    
        fc_net = Sequential([
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(100, activation=None),
        ])
    
        conv_net.build(input_shape=[None, 32, 32, 3])
        fc_net.build(input_shape=[None, 512])
        optimizer = optimizers.Adam(lr=1e-4)
    
        # [1, 2] + [3, 4] => [1, 2, 3, 4]
        variables = conv_net.trainable_variables + fc_net.trainable_variables
    
        for epoch in range(50):
    
            for step, (x,y) in enumerate(train_db):
    
                with tf.GradientTape() as tape:
                    # [b, 32, 32, 3] => [b, 1, 1, 512]
                    out = conv_net(x)
                    # flatten, => [b, 512]
                    out = tf.reshape(out, [-1, 512])
                    # [b, 512] => [b, 100]
                    logits = fc_net(out)
                    # [b] => [b, 100]
                    y_onehot = tf.one_hot(y, depth=100)
                    # compute loss
                    loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                    loss = tf.reduce_mean(loss)
    
                grads = tape.gradient(loss, variables)
                optimizer.apply_gradients(zip(grads, variables))
    
                if step %100 == 0:
                    print(epoch, step, 'loss:', float(loss))
    
    
    
            total_num = 0
            total_correct = 0
            for x,y in test_db:
    
                out = conv_net(x)
                out = tf.reshape(out, [-1, 512])
                logits = fc_net(out)
                prob = tf.nn.softmax(logits, axis=1)
                pred = tf.argmax(prob, axis=1)
                pred = tf.cast(pred, dtype=tf.int32)
    
                correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
                correct = tf.reduce_sum(correct)
    
                total_num += x.shape[0]
                total_correct += int(correct)
    
            acc = total_correct / total_num
            print(epoch, 'acc:', acc)
    
    
    
    if __name__ == '__main__':
        main()
  • 相关阅读:
    大文件上传
    http协议
    memcache通过hash取模算法,实现多服务器存取值
    页面静态化案例---一键生成详情页面静态化(全站静态化+局部动态)
    页面静态化案例---一键生成详情页面静态化(全站静态化)
    页面静态化案例---数据列表静态化
    LCD1602液晶显示模块的单片机驱动深入详解之硬件篇
    ANDROID开发之GC_CONCURRENT freed
    ANDROID开发之OOM:一张图片(BitMap)占用内存的计算 图片内存优化
    ANDROID开发 Fatal signal 11(SIGSEGV) at 0x问题解决方案
  • 原文地址:https://www.cnblogs.com/zhangxianrong/p/14725623.html
Copyright © 2011-2022 走看看