import argparse
import torch
import tqdm
from root_path import root
import os
import pandas as pd
import json
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer
from torch.utils.data import Dataset, DataLoader, TensorDataset
import numpy as np
import random
import re
from transformers import BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
# 数据集读取
class NewsDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
# 读取单个样本
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(int(self.labels[idx]))
return item
def __len__(self):
return len(self.labels)
data_path = os.path.join(root, "data", "raw_data")
code_to_label_file = os.path.join(data_path, "code_to_label.json")
def get_dataset():
train_path = os.path.join(data_path, "all_0727.xlsx")
test_path = os.path.join(data_path, "更正的测试集.xlsx")
train_table = pd.read_excel(train_path, sheet_name="data")
train_sentence_list = train_table["句子"].tolist()
train_code_list = train_table["语义编号"]
with open(code_to_label_file, "r", encoding="utf8") as f:
code_label = json.load(f)
train_num_list = [code_label[train_code][2] for train_code in train_code_list]
return train_sentence_list,train_num_list, len(code_label)
def flat_accuracy(logits, label_ids):
pred = np.argmax(logits, axis = 1)
acc = np.equal(pred, label_ids).sum()
return acc
# 训练函数
def train(model, train_loader, optim, device, scheduler, epoch, test_dataloader):
model.train()
total_train_loss = 0
iter_num = 0
total_iter = len(train_loader)
for batch in train_loader:
# 正向传播
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
label = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=label)
loss = outputs[0]
total_train_loss += loss.item()
# 反向梯度信息
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# 参数更新
optim.step()
scheduler.step()
iter_num += 1
if (iter_num % 100 == 0):
print("epoth: %d, iter_num: %d, loss: %.4f, %.2f%%" % (
epoch, iter_num, loss.item(), iter_num / total_iter * 100))
print("Epoch: %d, Average training loss: %.4f" % (epoch, total_train_loss / len(train_loader)))
def validation(model, test_dataloader, device):
model.eval()
total_eval_accuracy = 0
total_eval_loss = 0
for batch in test_dataloader:
with torch.no_grad():
# 正常传播
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
logits = outputs[1]
total_eval_loss += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = labels.to('cpu').numpy()
total_eval_accuracy += flat_accuracy(logits, label_ids)
avg_val_accuracy = total_eval_accuracy / len(test_dataloader)
print("Accuracy: %.4f" % (avg_val_accuracy))
print("Average testing loss: %.4f" % (total_eval_loss / len(test_dataloader)))
print("-------------------------------")
def main(model_name,
epoch,
learning_rate,
batch_size,
device,
save_dir):
device = torch.device(device)
"""读取训练数据"""
sentence, label, num_cls = get_dataset()
"""划分为训练集和验证集, stratify 按照标签进行采样,训练集和验证部分同分布,
random_state:设置随机数种子,保证每次都是同一个随机数。若为0或不填,则每次得到数据都不一样
"""
x_train, x_test, train_label, test_label =
train_test_split(sentence, label, test_size=0.5, stratify=label, random_state=5)
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
train_encoding = tokenizer(x_train, truncation=True, padding=True, max_length=64)
test_encoding = tokenizer(x_test, truncation=True, padding=True, max_length=64)
train_dataset = NewsDataset(train_encoding, train_label)
test_dataset = NewsDataset(test_encoding, test_label)
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=194)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 单个读取到批量读取
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=True)
# 优化方法
optim = AdamW(model.parameters(), lr=2e-5)
total_steps = len(train_loader) * 1
scheduler = get_linear_schedule_with_warmup(optim,
num_warmup_steps=0, # Default value in run_glue.py
num_training_steps=total_steps)
for epoch in range(4):
print("------------Epoch: %d ----------------" % epoch)
train(model, train_loader, optim, device, scheduler, epoch, test_dataloader)
validation(model, test_dataloader, device)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='afi')
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--batch_size', type=int, default=2048)
parser.add_argument('--device', default='cuda:0')
parser.add_argument('--save_dir', default='chkpt')
args = parser.parse_args()
main(args.model_name,
args.epoch,
args.learning_rate,
args.batch_size,
args.device,
args.save_dir)