zoukankan      html  css  js  c++  java
  • 推荐系统(三):基于pytorch实现DCN

    一、main.py

    import torch
    import tqdm
    from sklearn.metrics import roc_auc_score
    from torch.utils.data import DataLoader
    import os
    import numpy as np
    from torchfm.dataset.criteo import CriteoDataset
    
    from torchfm.model.dcn import DeepCrossNetworkModel
    
    from torchfm.model.fnn import FactorizationSupportedNeuralNetworkModel
    
    from torchfm.model.pnn import ProductNeuralNetworkModel
    
    
    
    def get_dataset(path):
        return CriteoDataset(path)
    
    
    
    def get_model(name, dataset):
        """
        Hyperparameters are empirically determined, not opitmized.
        """
        field_dims = dataset.field_dims
        if name == 'fnn':
            return FactorizationSupportedNeuralNetworkModel(field_dims, embed_dim=16, mlp_dims=(16, 16), dropout=0.2)
        elif name == 'ipnn':
            return ProductNeuralNetworkModel(field_dims, embed_dim=16, mlp_dims=(16,), method='inner', dropout=0.2)
        elif name == 'opnn':
            return ProductNeuralNetworkModel(field_dims, embed_dim=16, mlp_dims=(16,), method='outer', dropout=0.2)
        elif name == 'dcn':
            return DeepCrossNetworkModel(field_dims, embed_dim=16, num_layers=3, mlp_dims=(16, 16), dropout=0.2)
    
        else:
            raise ValueError('unknown model name: ' + name)
    
    
    class EarlyStopper(object):
    
        def __init__(self, num_trials, save_path):
            self.num_trials = num_trials
            self.trial_counter = 0
            self.best_accuracy = 0
            self.best_loss = 100
            self.save_path = save_path
    
        def is_continuable(self, model, accuracy):
            if accuracy > self.best_accuracy:
                self.best_accuracy = accuracy
                self.trial_counter = 0
                torch.save(model, self.save_path)
                return True
            elif self.trial_counter + 1 < self.num_trials:
                self.trial_counter += 1
                return True
            else:
                return False
    
        def is_continue_loss(self, model, loss):
            if loss < self.best_loss:
                self.best_loss = loss
                self.trial_counter = 0
                torch.save(model, self.save_path)
                return True
            elif self.trial_counter + 1 < self.num_trials:
                self.trial_counter += 1
                return True
            else:
                return False
    
    
    def train(model, optimizer, data_loader, criterion, device, log_interval=100):
        model.train()
        total_loss = 0
        tk0 = tqdm.tqdm(data_loader, smoothing=0, mininterval=1.0)
        for i, (fields, target) in enumerate(tk0):
            fields, target = fields.to(device), target.to(device)
            y = model(fields)
            loss = criterion(y, target.float())
            model.zero_grad()
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
            if (i + 1) % log_interval == 0:
                tk0.set_postfix(loss=total_loss / log_interval)
                total_loss = 0
    
    
    def my_test(model, data_loader, device, criterion):
        model.eval()
        targets, predicts = list(), list()
        with torch.no_grad():
            for fields, target in tqdm.tqdm(data_loader, smoothing=0, mininterval=1.0):
                fields, target = fields.to(device), target.to(device)
                y = model(fields)
                targets.extend(target.tolist())
                predicts.extend(y.tolist())
                loss = criterion(y, target.float())
        return loss, roc_auc_score(targets, predicts)
    
    
    
    def main(dataset_path,
             model_name,
             epoch,
             learning_rate,
             batch_size,
             weight_decay,
             device,
             save_dir):
        device = torch.device(device)
        dataset = get_dataset(dataset_path)
        dims = dataset.field_dims
        npy_out = "field_dims.npy"
        if not os.path.exists(npy_out):
            np.save(npy_out, dims)
    
        train_length = int(len(dataset) * 0.8)
        valid_length = int(len(dataset) * 0.1)
        test_length = len(dataset) - train_length - valid_length
        train_dataset, valid_dataset, test_dataset = torch.utils.data.random_split(
            dataset, (train_length, valid_length, test_length))
        train_data_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=0)
        valid_data_loader = DataLoader(valid_dataset, batch_size=batch_size, num_workers=0)
        test_data_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=0)
        model = get_model(model_name, dataset).to(device)
        criterion = torch.nn.BCELoss()
        optimizer = torch.optim.Adam(params=model.parameters(), lr=learning_rate, weight_decay=weight_decay)
        early_stopper = EarlyStopper(num_trials=5, save_path=f'{save_dir}/{model_name}.pt')
        for epoch_i in range(epoch):
            train(model, optimizer, train_data_loader, criterion, device)
            loss, auc = my_test(model, valid_data_loader, device, criterion)
            print('epoch:', epoch_i, 'validation: auc:', auc, "loss:", loss)
            if not early_stopper.is_continuable(model, auc):
                print(f'validation: best auc: {early_stopper.best_accuracy}')
                break
        loss, auc = my_test(model, test_data_loader, device, criterion)
        print(f'test loss: {loss}, test auc: {auc}')
    
    
    if __name__ == '__main__':
        import argparse
    
        parser = argparse.ArgumentParser()
    
        parser.add_argument('--dataset_path', default=r'E:
    ecommend_systemdata	rain.txt')
        parser.add_argument('--model_name', default='dcn')
        parser.add_argument('--epoch', type=int, default=100)
        parser.add_argument('--learning_rate', type=float, default=0.005)
        parser.add_argument('--batch_size', type=int, default=32)
        parser.add_argument('--weight_decay', type=float, default=1e-6)
        parser.add_argument('--device', default='cpu')
        parser.add_argument('--save_dir', default='E:/recommend_system/chkpt')
        args = parser.parse_args()
        main(args.dataset_path,
             args.model_name,
             args.epoch,
             args.learning_rate,
             args.batch_size,
             args.weight_decay,
             args.device,
             args.save_dir)

    二、predicts.py

    import numpy as np
    from functools import lru_cache
    import math
    import torch
    
    @lru_cache(maxsize=None)
    def convert_numeric_feature(val: str):
        if val == '':
            return 'NULL'
        v = int(val)
        if v > 2:
            return str(int(math.log(v) ** 2))
        else:
            return str(v - 2)
    
    class InferencePredict():
        def __init__(self):
            mapper_path = "mapper.npy"
            self.model_path = r"E:
    ecommend_systemchkptdcn.pt"
            """数值和类别总列数"""
            self.NUM_FEATS = 23
            """数值类别"""
            self.NUM_INT_FEATS = 7
            read_dictionary = np.load(mapper_path, allow_pickle=True).item()
            self.feat_mapper = read_dictionary["feat_mapper"]
            self.defaults = read_dictionary["defaults"]
            self.model = torch.load(self.model_path)
            self.model.eval()
    
        def get_data(self, dataline, feat_mapper,defaults):
            values = dataline.rstrip('
    ').split('	')
            np_array = np.zeros(self.NUM_FEATS + 1, dtype=np.uint32)
            np_array[0] = int(values[0])
            for i in range(1, self.NUM_INT_FEATS + 1):
                np_array[i] = feat_mapper[i].get(convert_numeric_feature(values[i]), defaults[i])
            for i in range(self.NUM_INT_FEATS + 1, self.NUM_FEATS + 1):
                np_array[i] = feat_mapper[i].get(values[i], defaults[i])
            return np_array
    
        def predict(self, dataline):
    
            np_array = self.get_data(dataline, self.feat_mapper,self.defaults).astype(dtype=np.long)
            x,y = np_array[1:], np_array[0]
            with torch.no_grad():
                output = self.model(torch.from_numpy(x))
                print(output)
                preds = int(torch.round(output).item())
            return preds, y
    
        def main(self):
            s1 = "1    450    18    47    619    153    12    0    male    daily    1    0    0    0    0    MD280612    BR803759    PV285968    CT470265    PF470265    10    0    2    0    W441,W19887,W45818,W63,W894,W38883,W135945,W1684,W72349,W15298,W858,W38883"
            s2 = "0    290    0    34    0    0    12    5    male    monthly    1    0    0    0    0    MD441850    BR803759    PV419710    CT378940    PF470265    0    0    3    0    W605,W396,W554,W6275,W6257,W651,W51,W32265,W682,W250,W97,W1748"
            s3 = "0    290    0    34    0    0    12    5    male    monthly    1    0    0    0    0    MD441850    BR803759    PV419710    CT378940    PF470265    0    0    3    0    W605,W396,W554,W6275,W6257,W651,W51,W32265,W682,W250,W97,W1748"
            self.predict(s1)
            self.predict(s2)
            self.predict(s3)
    
    
    
    if __name__ == '__main__':
        InferencePredict().main()

    三、critio.py

    import math
    import shutil
    import struct
    from collections import defaultdict
    from functools import lru_cache
    from pathlib import Path
    
    import lmdb
    import numpy as np
    import torch.utils.data
    from tqdm import tqdm
    import os
    
    
    
    class CriteoDataset(torch.utils.data.Dataset):
        """
        Criteo Display Advertising Challenge Dataset
    
        Data prepration:
            * Remove the infrequent features (appearing in less than threshold instances) and treat them as a single feature
            * Discretize numerical values by log2 transformation which is proposed by the winner of Criteo Competition
    
        :param dataset_path: criteo train.txt path.
        :param cache_path: lmdb cache path.
        :param rebuild_cache: If True, lmdb cache is refreshed.
        :param min_threshold: infrequent feature threshold.
    
        Reference:
            https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset
            https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
        """
    
        def __init__(self, dataset_path=None, cache_path='.criteo', rebuild_cache=True, min_threshold=10):
            """数值和类别总列数"""
            self.NUM_FEATS = 23
            """数值类别"""
            self.NUM_INT_FEATS = 7
            self.min_threshold = min_threshold
            if rebuild_cache or not Path(cache_path).exists():
                shutil.rmtree(cache_path, ignore_errors=True)
                if dataset_path is None:
                    raise ValueError('create cache: failed: dataset_path is None')
                self.__build_cache(dataset_path, cache_path)
            self.env = lmdb.open(cache_path, create=False, lock=False, readonly=True)
            with self.env.begin(write=False) as txn:
                self.length = txn.stat()['entries'] - 1
                self.field_dims = np.frombuffer(txn.get(b'field_dims'), dtype=np.uint32)
    
        def __getitem__(self, index):
            with self.env.begin(write=False) as txn:
                np_array = np.frombuffer(
                    txn.get(struct.pack('>I', index)), dtype=np.uint32).astype(dtype=np.long)
            return np_array[1:], np_array[0]
    
        def __len__(self):
            return self.length
    
        def __build_cache(self, path, cache_path):
            feat_mapper, defaults = self.__get_feat_mapper(path)
            my_dict = {"feat_mapper":feat_mapper, "defaults": defaults}
            my_path = "mapper.npy"
            if not os.path.exists(my_path):
                np.save(my_path, my_dict)
            with lmdb.open(cache_path, map_size=int(1e11)) as env:
                field_dims = np.zeros(self.NUM_FEATS, dtype=np.uint32)
                for i, fm in feat_mapper.items():
                    field_dims[i - 1] = len(fm) + 1
                with env.begin(write=True) as txn:
                    txn.put(b'field_dims', field_dims.tobytes())
                for buffer in self.__yield_buffer(path, feat_mapper, defaults):
                    with env.begin(write=True) as txn:
                        for key, value in buffer:
                            txn.put(key, value)
    
        def __get_feat_mapper(self, path):
            feat_cnts = defaultdict(lambda: defaultdict(int))
            with open(path) as f:
                pbar = tqdm(f, mininterval=1, smoothing=0.1)
                pbar.set_description('Create criteo dataset cache: counting features')
                for line in pbar:
                    values = line.rstrip('
    ').split('	')
                    for i in range(1, self.NUM_INT_FEATS + 1):
                        feat_cnts[i][convert_numeric_feature(values[i])] += 1
                    for i in range(self.NUM_INT_FEATS + 1, self.NUM_FEATS + 1):
                        feat_cnts[i][values[i]] += 1
            feat_mapper = {i: {feat for feat, c in cnt.items() if c >= self.min_threshold} for i, cnt in feat_cnts.items()}
            feat_mapper = {i: {feat: idx for idx, feat in enumerate(cnt)} for i, cnt in feat_mapper.items()}
            defaults = {i: len(cnt) for i, cnt in feat_mapper.items()}
            return feat_mapper, defaults
    
        def __yield_buffer(self, path, feat_mapper, defaults, buffer_size=int(1e5)):
            item_idx = 0
            buffer = list()
            with open(path) as f:
                pbar = tqdm(f, mininterval=1, smoothing=0.1)
                pbar.set_description('Create criteo dataset cache: setup lmdb')
                for line in pbar:
                    values = line.rstrip('
    ').split('	')
                    np_array = np.zeros(self.NUM_FEATS + 1, dtype=np.uint32)
                    np_array[0] = int(values[0])
                    for i in range(1, self.NUM_INT_FEATS + 1):
                        np_array[i] = feat_mapper[i].get(convert_numeric_feature(values[i]), defaults[i])
                    for i in range(self.NUM_INT_FEATS + 1, self.NUM_FEATS + 1):
                        np_array[i] = feat_mapper[i].get(values[i], defaults[i])
    
                    buffer.append((struct.pack('>I', item_idx), np_array.tobytes()))
                    item_idx += 1
                    if item_idx % buffer_size == 0:
                        yield buffer
                        buffer.clear()
                yield buffer
    
    
    @lru_cache(maxsize=None)
    def convert_numeric_feature(val: str):
        if val == '':
            return 'NULL'
        v = int(val)
        if v > 2:
            return str(int(math.log(v) ** 2))
        else:
            return str(v - 2)

    四、DCN.py

    import torch
    
    from torchfm.layer import FeaturesEmbedding, CrossNetwork, MultiLayerPerceptron
    
    
    class DeepCrossNetworkModel(torch.nn.Module):
        """
        A pytorch implementation of Deep & Cross Network.
    
        Reference:
            R Wang, et al. Deep & Cross Network for Ad Click Predictions, 2017.
        """
    
        def __init__(self, field_dims, embed_dim, num_layers, mlp_dims, dropout):
            super().__init__()
            self.embedding = FeaturesEmbedding(field_dims, embed_dim)
            self.embed_output_dim = len(field_dims) * embed_dim
            self.cn = CrossNetwork(self.embed_output_dim, num_layers)
            self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout, output_layer=False)
            self.linear = torch.nn.Linear(mlp_dims[-1] + self.embed_output_dim, 1)
    
        def forward(self, x):
            """
            :param x: Long tensor of size ``(batch_size, num_fields)``
            """
            embed_x = self.embedding(x).view(-1, self.embed_output_dim)
            x_l1 = self.cn(embed_x)
            h_l2 = self.mlp(embed_x)
            x_stack = torch.cat([x_l1, h_l2], dim=1)
            p = self.linear(x_stack)
            return torch.sigmoid(p.squeeze(1))

    五、layer.py

    import numpy as np
    import torch
    import torch.nn.functional as F
    
    
    class FeaturesLinear(torch.nn.Module):
    
        def __init__(self, field_dims, output_dim=1):
            super().__init__()
            self.fc = torch.nn.Embedding(sum(field_dims), output_dim)
            self.bias = torch.nn.Parameter(torch.zeros((output_dim,)))
            self.offsets = np.array((0, *np.cumsum(field_dims)[:-1]), dtype=np.long)
    
        def forward(self, x):
            """
            :param x: Long tensor of size ``(batch_size, num_fields)``
            """
            x = x + x.new_tensor(self.offsets).unsqueeze(0)
            return torch.sum(self.fc(x), dim=1) + self.bias
    
    
    class FeaturesEmbedding(torch.nn.Module):
    
        def __init__(self, field_dims, embed_dim):
            super().__init__()
            self.embedding = torch.nn.Embedding(sum(field_dims), embed_dim)
            self.offsets = np.array((0, *np.cumsum(field_dims)[:-1]), dtype=np.long)
            torch.nn.init.xavier_uniform_(self.embedding.weight.data)
    
        def forward(self, x):
            """
            :param x: Long tensor of size ``(batch_size, num_fields)``
            """
            x = x + x.new_tensor(self.offsets).unsqueeze(0)
            return self.embedding(x)
    
    
    class FieldAwareFactorizationMachine(torch.nn.Module):
    
        def __init__(self, field_dims, embed_dim):
            super().__init__()
            self.num_fields = len(field_dims)
            self.embeddings = torch.nn.ModuleList([
                torch.nn.Embedding(sum(field_dims), embed_dim) for _ in range(self.num_fields)
            ])
            self.offsets = np.array((0, *np.cumsum(field_dims)[:-1]), dtype=np.long)
            for embedding in self.embeddings:
                torch.nn.init.xavier_uniform_(embedding.weight.data)
    
        def forward(self, x):
            """
            :param x: Long tensor of size ``(batch_size, num_fields)``
            """
            x = x + x.new_tensor(self.offsets).unsqueeze(0)
            xs = [self.embeddings[i](x) for i in range(self.num_fields)]
            ix = list()
            for i in range(self.num_fields - 1):
                for j in range(i + 1, self.num_fields):
                    ix.append(xs[j][:, i] * xs[i][:, j])
            ix = torch.stack(ix, dim=1)
            return ix
    
    
    class FactorizationMachine(torch.nn.Module):
    
        def __init__(self, reduce_sum=True):
            super().__init__()
            self.reduce_sum = reduce_sum
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            square_of_sum = torch.sum(x, dim=1) ** 2
            sum_of_square = torch.sum(x ** 2, dim=1)
            ix = square_of_sum - sum_of_square
            if self.reduce_sum:
                ix = torch.sum(ix, dim=1, keepdim=True)
            return 0.5 * ix
    
    
    class MultiLayerPerceptron(torch.nn.Module):
    
        def __init__(self, input_dim, embed_dims, dropout, output_layer=True):
            super().__init__()
            layers = list()
            for embed_dim in embed_dims:
                layers.append(torch.nn.Linear(input_dim, embed_dim))
                layers.append(torch.nn.BatchNorm1d(embed_dim))
                layers.append(torch.nn.ReLU())
                layers.append(torch.nn.Dropout(p=dropout))
                input_dim = embed_dim
            if output_layer:
                layers.append(torch.nn.Linear(input_dim, 1))
            self.mlp = torch.nn.Sequential(*layers)
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, embed_dim)``
            """
            return self.mlp(x)
    
    
    class InnerProductNetwork(torch.nn.Module):
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            num_fields = x.shape[1]
            row, col = list(), list()
            for i in range(num_fields - 1):
                for j in range(i + 1, num_fields):
                    row.append(i), col.append(j)
            return torch.sum(x[:, row] * x[:, col], dim=2)
    
    
    class OuterProductNetwork(torch.nn.Module):
    
        def __init__(self, num_fields, embed_dim, kernel_type='mat'):
            super().__init__()
            num_ix = num_fields * (num_fields - 1) // 2
            if kernel_type == 'mat':
                kernel_shape = embed_dim, num_ix, embed_dim
            elif kernel_type == 'vec':
                kernel_shape = num_ix, embed_dim
            elif kernel_type == 'num':
                kernel_shape = num_ix, 1
            else:
                raise ValueError('unknown kernel type: ' + kernel_type)
            self.kernel_type = kernel_type
            self.kernel = torch.nn.Parameter(torch.zeros(kernel_shape))
            torch.nn.init.xavier_uniform_(self.kernel.data)
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            num_fields = x.shape[1]
            row, col = list(), list()
            for i in range(num_fields - 1):
                for j in range(i + 1, num_fields):
                    row.append(i), col.append(j)
            p, q = x[:, row], x[:, col]
            if self.kernel_type == 'mat':
                kp = torch.sum(p.unsqueeze(1) * self.kernel, dim=-1).permute(0, 2, 1)
                return torch.sum(kp * q, -1)
            else:
                return torch.sum(p * q * self.kernel.unsqueeze(0), -1)
    
    
    class CrossNetwork(torch.nn.Module):
    
        def __init__(self, input_dim, num_layers):
            super().__init__()
            self.num_layers = num_layers
            self.w = torch.nn.ModuleList([
                torch.nn.Linear(input_dim, 1, bias=False) for _ in range(num_layers)
            ])
            self.b = torch.nn.ParameterList([
                torch.nn.Parameter(torch.zeros((input_dim,))) for _ in range(num_layers)
            ])
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            x0 = x
            for i in range(self.num_layers):
                xw = self.w[i](x)
                x = x0 * xw + self.b[i] + x
            return x
    
    
    class AttentionalFactorizationMachine(torch.nn.Module):
    
        def __init__(self, embed_dim, attn_size, dropouts):
            super().__init__()
            self.attention = torch.nn.Linear(embed_dim, attn_size)
            self.projection = torch.nn.Linear(attn_size, 1)
            self.fc = torch.nn.Linear(embed_dim, 1)
            self.dropouts = dropouts
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            num_fields = x.shape[1]
            row, col = list(), list()
            for i in range(num_fields - 1):
                for j in range(i + 1, num_fields):
                    row.append(i), col.append(j)
            p, q = x[:, row], x[:, col]
            inner_product = p * q
            attn_scores = F.relu(self.attention(inner_product))
            attn_scores = F.softmax(self.projection(attn_scores), dim=1)
            attn_scores = F.dropout(attn_scores, p=self.dropouts[0], training=self.training)
            attn_output = torch.sum(attn_scores * inner_product, dim=1)
            attn_output = F.dropout(attn_output, p=self.dropouts[1], training=self.training)
            return self.fc(attn_output)
    
    
    class CompressedInteractionNetwork(torch.nn.Module):
    
        def __init__(self, input_dim, cross_layer_sizes, split_half=True):
            super().__init__()
            self.num_layers = len(cross_layer_sizes)
            self.split_half = split_half
            self.conv_layers = torch.nn.ModuleList()
            prev_dim, fc_input_dim = input_dim, 0
            for i in range(self.num_layers):
                cross_layer_size = cross_layer_sizes[i]
                self.conv_layers.append(torch.nn.Conv1d(input_dim * prev_dim, cross_layer_size, 1,
                                                        stride=1, dilation=1, bias=True))
                if self.split_half and i != self.num_layers - 1:
                    cross_layer_size //= 2
                prev_dim = cross_layer_size
                fc_input_dim += prev_dim
            self.fc = torch.nn.Linear(fc_input_dim, 1)
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            xs = list()
            x0, h = x.unsqueeze(2), x
            for i in range(self.num_layers):
                x = x0 * h.unsqueeze(1)
                batch_size, f0_dim, fin_dim, embed_dim = x.shape
                x = x.view(batch_size, f0_dim * fin_dim, embed_dim)
                x = F.relu(self.conv_layers[i](x))
                if self.split_half and i != self.num_layers - 1:
                    x, h = torch.split(x, x.shape[1] // 2, dim=1)
                else:
                    h = x
                xs.append(x)
            return self.fc(torch.sum(torch.cat(xs, dim=1), 2))
    
    
    class AnovaKernel(torch.nn.Module):
    
        def __init__(self, order, reduce_sum=True):
            super().__init__()
            self.order = order
            self.reduce_sum = reduce_sum
    
        def forward(self, x):
            """
            :param x: Float tensor of size ``(batch_size, num_fields, embed_dim)``
            """
            batch_size, num_fields, embed_dim = x.shape
            a_prev = torch.ones((batch_size, num_fields + 1, embed_dim), dtype=torch.float).to(x.device)
            for t in range(self.order):
                a = torch.zeros((batch_size, num_fields + 1, embed_dim), dtype=torch.float).to(x.device)
                a[:, t+1:, :] += x[:, t:, :] * a_prev[:, t:-1, :]
                a = torch.cumsum(a, dim=1)
                a_prev = a
            if self.reduce_sum:
                return torch.sum(a[:, -1, :], dim=-1, keepdim=True)
            else:
                return a[:, -1, :]

     

  • 相关阅读:
    扫描FTP,保存文件
    读取本地配置文件
    Infinity 与 NAN
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    svn检出项目,Project *** is already imported into workspace
    [编写高质量代码:改善java程序的151个建议]建议69 列表相等只需关心元素相等
    [编写高质量代码:改善java程序的151个建议]建议68 频繁插入和删除时使用LinkedList
    [编写高质量代码:改善java程序的151个建议]建议67 不同的列表选择不同的遍历方法
    [编写高质量代码:改善java程序的151个建议]建议66 asList方法产生的List对象不可更改
    点滴记录--批量添加数据(千万级)方法
  • 原文地址:https://www.cnblogs.com/zhangxianrong/p/15152054.html
Copyright © 2011-2022 走看看