zoukankan      html  css  js  c++  java
  • python3数据结构与算法

    python内置的数据结构包括:列表(list)、集合(set)、字典(dictionary),一般情况下我们可以直接使用这些数据结构,但通常我们还需要考虑比如搜索、排序、排列以及赛选等一些常见的问题。

    如何巧妙的使用数据结构和同数据有关的算法,在collections模块中包含了针对各种数据结构的解决方法。

    1、序列分解为变量

    In [5]: a = (4,5,6)
    In [6]: x,y,z = a
    In [7]: x
    Out[7]: 4
    In [8]: z
    Out[8]: 6
    In [9]: y
    Out[9]: 5
    In [10]: b = ['python',222,(2018,9,30)]  #嵌套分解变量
    In [11]: p,n,(year,mon,day) = b
    In [12]: p
    Out[12]: 'python'
    In [13]: n
    Out[13]: 222
    In [14]: year
    Out[14]: 2018
    In [15]: day
    Out[15]: 30
    #可以分解的对象只要是可迭代对象如字符串、文件、迭代器和生成器
    In [16]: s = 'py'
    In [17]: x,y = s
    In [18]: x
    Out[18]: 'p'
    #忽略某个值使用下划线代替
    In [19]: data = 'python'
    In [20]: x,_,_,y,_,_ = data
    In [21]: x
    Out[21]: 'p'
    In [22]: y
    Out[22]: 'h'

    2、任意长度对象分解元素

    要从某个可迭代对象中分解出N个元素,可以使用python的“*表达式”来代表多个

    列1:在作业成绩中去掉最高和最低后取平均分

    In [47]: grades = (68,98,85,78,84,79,88)
    In [48]: def drop_first_last(grades):
        ...:     first,*middle,last = grades
        ...:     return sum(middle) / len(middle)
        ...: 
        ...: 
    
    In [49]: drop_first_last(sorted(list(grades),reverse=True))
    Out[49]: 82.8

    列2:在嵌套元组中*式语法的分解应用

    records = [
        ('foo',1,2,3),
        ('bar',11,22,33),
        ('foo',4,5,6),
        ('bar',44,55,66),
    ]
    
    def do_foo(x,y,z):
        print('foo',x,y,z)
    
    def do_bar(a,b,c):
        print('bar',a,b,c)
    
    for tag,*args in records:  #分解元组打印
        if tag == 'foo':
            do_foo(*args)
        elif tag == 'bar':
            do_bar(*args)
    
    #outing
    foo 1 2 3
    bar 11 22 33
    foo 4 5 6
    bar 44 55 66

    列3:通过split拆分分解元素

    In [52]: passwd = 'root:x:0:0:root:/root:/bin/bash'
    
    In [53]: username,*_,homedir,sh = passwd.split(":")
    
    In [54]: username
    Out[54]: 'root'
    
    In [55]: homedir
    Out[55]: '/root'
    
    In [56]: sh
    Out[56]: '/bin/bash'

    3、保存最后N个元素

    列1:使用collections.deque保存有限的历史纪录,deque用来创建一个固定长度的队列

    In [61]: from collections import deque
    #创建队列长度对象
    In [62]: q = deque(maxlen=3)
    #加入数据到队列
    In [63]: q.append(1)
    
    In [64]: q.append(2)
    
    In [65]: q.append(3)
    
    In [66]: q
    Out[66]: deque([1, 2, 3])
    
    In [67]: q.append(4)
    
    In [68]: q
    Out[68]: deque([2, 3, 4])
    #从左边加入数据到队列
    In [69]: q.appendleft(5)
    
    In [70]: q
    Out[70]: deque([5, 2, 3])
    #从末尾取出一个数据
    In [71]: q.pop()
    Out[71]: 3
    
    In [72]: q
    Out[72]: deque([5, 2])
    
    In [73]: q.popleft()
    Out[73]: 5
    
    In [74]: q
    Out[74]: deque([2])

    4、找到最大或最小的N个元素

    在heapq模块中有两个函数nlargest()从最大的值开始取,nsmallest()从最小的值开始取

    In [75]: import heapq
    
    In [76]: numbers = [1,3,4,9,11,34,55,232,445,9812,321,45,67,434,555]
    #取三个最大的值
    In [77]: heapq.nlargest(3,numbers)
    Out[77]: [9812, 555, 445]
    #取三个最小的值
    In [78]: heapq.nsmallest(3,numbers)
    Out[78]: [1, 3, 4]

    5、python堆排序peapq模块

    hepaq模块实现了python中的推排序,并提供了很多方法,让用python实现排序算法有了简单快捷的方式

    In [1]: import heapq
    In [2]: date = [19,1,9,3,11,21]
    In [3]: heap = []
    #heappush方法会插入一个元素到堆中,并按从小到大排序
    In [4]: for i in date:
       ...:     heapq.heappush(heap,i)
       ...:     
    In [5]: heap
    Out[5]: [1, 3, 9, 19, 11, 21]
    In [6]: date
    Out[6]: [19, 1, 9, 3, 11, 21]
    #heapify方法会重新排序整个列表
    In [7]: heapq.heapify(date)
    In [8]: date
    Out[8]: [1, 3, 9, 19, 11, 21]
    #heappop()方法会取出第一个元素,并将剩下的元素堆排序
    In [10]: date
    Out[10]: [19, 1, 9, 3, 11, 21]
    In [11]: heapq.heappop(date)
    Out[11]: 19
    In [12]: date
    Out[12]: [1, 3, 9, 21, 11]
    #heapreplace()的作用是在堆中取第一个元素并插入一个元素
    In [27]: date = [11,8,3,78,35]
    In [28]: heapq.heapreplace(date,1)
    Out[28]: 11
    In [29]: date
    Out[29]: [1, 8, 3, 78, 35]
    #在集合中找出最大或者最小的N个元素,可以使用nlargest()和nsmallest()
    In [30]: date = [3,88,32,97,56]
    In [31]: heapq.nlargest(2,date)
    Out[31]: [97, 88]
    In [33]: heapq.nsmallest(2,date)
    Out[33]: [3, 32]
    #nlargest()和nsmallest()还可以接受一个key参数来实现复杂的数据结构上的取值,如根据字典的值取值
    In [34]: port = [
        ...: {'name':'dhcp','port':67},
        ...: {'name':'mysql','port':3306},
        ...: {'name':'memcached','port':11211},
        ...: {'name':'nginx','port':80},
        ...: {'name':'ssh','port':22},]
    
    In [35]: heapq.nlargest(3,port,key=lambda x:x['port'])
    Out[35]: 
    [{'name': 'memcached', 'port': 11211},
     {'name': 'mysql', 'port': 3306},
     {'name': 'nginx', 'port': 80}]
    
    In [36]: heapq.nsmallest(3,port,key=lambda x:x['port'])
    Out[36]: 
    [{'name': 'ssh', 'port': 22},
     {'name': 'dhcp', 'port': 67},
     {'name': 'nginx', 'port': 80}]

    实现优先级队列实例:

    import heapq
    class priorityqueue(object):
        def __init__(self):
            self._queue = []
            self._index = 0
        def push(self,item,priority):
            heapq.heappush(self._queue,(-priority,self._index,item))
            self._index += 1
        def pop(self):
            return heapq.heappop(self._queue)[-1]def listt(self):
            return self._queue
    
    q = priorityqueue()
    q.push('python',44)
    q.push('java',2)
    q.push('c++',4)
    q.push('c#',8)
    q.push('goo',88)
    q.push('perl',1)
    date1 = q.listt()
    print(date1)
    print(q.pop())
    print(q.listt())
    
    #output
    [(-88, 4, 'goo'), (-44, 0, 'python'), (-4, 2, 'c++'), (-2, 1, 'java'), (-8, 3, 'c#'), (-1, 5, 'perl')]
    goo
    [(-44, 0, 'python'), (-8, 3, 'c#'), (-4, 2, 'c++'), (-2, 1, 'java'), (-1, 5, 'perl')]

    6、在字典中将键映射到多个值上

    可以使用列表、元组、集合来创建多个值的字典键值

    dictlist = {
        'a':[1,2],
        'b':[3,4],
        'c':[5,6],
    }
    dictset = {
        'as':{7,8},
        'bs':{9,0},
    }

    在collection模块中的defaultdict类,它可以自动初始化第一个值,只需要添加元素即可

    In [1]: from collections import defaultdict
    
    In [2]: d = defaultdict(list)
    
    In [3]: d
    Out[3]: defaultdict(list, {})
    
    In [4]: d['a'].append(1)
    
    In [5]: d['a'].append(2)
    
    In [6]: d
    Out[6]: defaultdict(list, {'a': [1, 2]})

    7、让字典保持有序

    要控制字典中元素的顺序,可以使用collections模块中的OrderedDict类,当对字典做迭代时,它会严格按照元素初始添加的顺序进行迭代

    from collections import OrderedDict
    
    d = OrderedDict()
    d['one'] = 1
    d['two'] = 2
    d['three'] = 3
    d['four'] = 4
    
    for key,value in d.items():
        print(key,value)
    
    #output
    one 1
    two 2
    three 3
    four 4

    当我们先精确控制字典中各字段的顺序然后序列化时,只需要在序列化前使用OrderdDist来构建字典数据,OrderedDict内部维护了一个双向链表,它会根据元素加入的顺序来排列键的位置,第一个新加入的元素被放置在链表的末尾,以后对已存在的键做修改也不会改变键的顺序,由于它额外创建了链表所占用的空间会是普通字典的2倍

    from collections import OrderedDict
    import json
    d = OrderedDict()
    d['one'] = 1
    d['two'] = 2
    d['three'] = 3
    d['four'] = 4
    jsd = json.dumps(d)
    d1 = json.loads(jsd)
    print(jsd)
    print(d1)
    
    #
    {"one": 1, "two": 2, "three": 3, "four": 4}
    {'one': 1, 'two': 2, 'three': 3, 'four': 4}

    8、字典中的计算(求最大值、最小值和排序)

    prices = {
        'ACME':45.23,
        'AAPL':612.78,
        'IBM':205.55,
        'HPQ':10.75,
        'FB':10.75
    }
    
    print(min(zip(prices.values(),prices.keys())))
    print(max(zip(prices.values(),prices.keys())))
    print(sorted(zip(prices.values(),prices.keys())))
    
    #使用zip()将字典中的值映射为元组的迭代器,但zip()只能被使用一次
    #如果对比的值相同,则选择键的排序大小
    #
    (10.75, 'FB')
    (612.78, 'AAPL')
    [(10.75, 'FB'), (10.75, 'HPQ'), (45.23, 'ACME'), (205.55, 'IBM'), (612.78, 'AAPL')]

    9、在两个字典中寻找相同点

    a = {'x':1,'y':2,'z':3}
    b = {'w':10,'x':11,'y':2}
    print(a.keys() & b.keys())  #a和b中同时都有的key
    print(a.keys() - b.keys())  #a中的键不在b中出现的key
    print(a.items() & b.items())  #a和b中键值都相同的元素
    
    #
    {'x', 'y'}
    {'z'}
    {('y', 2)}
    In [1]: a = {'a':11,'b':22,'c':44,'d':99,'f':101}
    #推倒式排除键新建字典
    In [2]: c = {key:a[key] for key in a.keys() - {'b','d'}}
    
    In [3]: c
    Out[3]: {'f': 101, 'a': 11, 'c': 44}

    10、从序列中移除重复项并保持元素顺序

    dic = [{'x':1,'y':3},{'x':3,'y':8},{'x':1,'y':11},{'x':1,'y':3}]
    def dedupe(items,key=None):
        seen = set()
        for item in items:
            val = item if key is None else key(item)
            if val not in seen:
                yield item
                seen.add(val)
    
    #key传递函数将序列中的元素转换为可哈希值,来去除重复项
    date = list(dedupe(dic,key=lambda d:(d['x'],d['y'])))
    print(date)
    date1 = list(dedupe(dic,key=lambda x:(x['x'])))
    print(date1)
    
    #
    [{'x': 1, 'y': 3}, {'x': 3, 'y': 8}, {'x': 1, 'y': 11}]
    [{'x': 1, 'y': 3}, {'x': 3, 'y': 8}]

    11、对切片命名

    使用内置函数slice来创建切片对象

    In [4]: li = [1,2,3,4,5,6,7,8,9,0]
    
    In [5]: cost = li[slice(2,8)]
    
    In [6]: cost
    Out[6]: [3, 4, 5, 6, 7, 8]
    
    In [8]: li[slice(2,9,2)]
    Out[8]: [3, 5, 7, 9]

    12、找出序列中出现次数最多的元素

    collections模块中的Counter类可以直接统计每个元素出现的次数,它会以字典的形式映射每个元素出现的次数,其中的most_common()方法可以直接显示结果,可传参数为显示的元素个数

    In [15]: date = [1,23,4,3,2,5,23,123,553,23,1,3,4,5,2,3,423,12,3,4,23,412,43]
    
    In [16]: from collections import Counter
    
    In [17]: Counter(date)
    Out[17]: 
    Counter({1: 2,
             23: 4,
             4: 3,
             3: 4,
             2: 2,
             5: 2,
             123: 1,
             553: 1,
             423: 1,
             12: 1,
             412: 1,
             43: 1})
    In [18]: Counter(date).most_common()
    Out[18]: 
    [(23, 4),
     (3, 4),
     (4, 3),
     (1, 2),
     (2, 2),
     (5, 2),
     (123, 1),
     (553, 1),
     (423, 1),
     (12, 1),
     (412, 1),
     (43, 1)]
    
    In [19]: Counter(date).most_common(2)
    Out[19]: [(23, 4), (3, 4)]
    
    In [20]: Counter(date).most_common(4)
    Out[20]: [(23, 4), (3, 4), (4, 3), (1, 2)]
    In [27]: date1 = ['a','b','c','a','a','b']
    
    In [28]: from collections import Counter
    #生成一个Counter对象,为字典映射的统计值
    In [29]: counts = Counter(date1)
    
    In [30]: counts['a']
    Out[30]: 3
    #创建第二个序列
    In [31]: date2 = ['b','b','a']
    #先统计元素出现的次数
    In [32]: counts.most_common()
    Out[32]: [('a', 3), ('b', 2), ('c', 1)]
    #使用update()方法来手动更新counts对象
    In [33]: counts.update(date2)
    #查看结果
    In [34]: counts.most_common()
    Out[34]: [('a', 4), ('b', 4), ('c', 1)]
    #创建第二个counter对象
    In [35]: counts1 = Counter(date2)
    #counter对象可以用加减来运算
    In [36]: counts - counts1
    Out[36]: Counter({'a': 3, 'b': 2, 'c': 1})

    13、字典列表排序

    operator模块中的itemgetter函数可以对嵌套数据结构的排序会非常简单且运行很快

    from operator import itemgetter
    date1 = [
        {'fname':'Brian','lname':'Jones','uid':1003},
        {'fname':'David','lname':'Beazley','uid':1002},
        {'fname':'John','lname':'Cleese','uid':1001},
        {'fname':'Big','lname':'Jones','uid':1004},
    ]
    
    print(sorted(date1,key=itemgetter('uid')))
    print(sorted(date1,key=itemgetter('uid'),reverse=True)) #反向排序
    print(sorted(date1,key=itemgetter('uid','fname')))  #通过多个公共键排序
    
    print(sorted(date1,key=lambda x:x['uid']))  #也可以使用匿名函数来代替,但速度没有itemgetter()函数快
    
    print(min(date1,key=itemgetter('uid'))) #itemgetter()也可以用在去最大或最小值上
    print(max(date1,key=itemgetter('uid')))
    
    #
    [{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}, {'fname': 'David', 'lname': 'Beazley', 'uid': 1002}, {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003}, {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}]
    [{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}, {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003}, {'fname': 'David', 'lname': 'Beazley', 'uid': 1002}, {'fname': 'John', 'lname': 'Cleese', 'uid': 1001}]
    [{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}, {'fname': 'David', 'lname': 'Beazley', 'uid': 1002}, {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003}, {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}]
    [{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}, {'fname': 'David', 'lname': 'Beazley', 'uid': 1002}, {'fname': 'Brian', 'lname': 'Jones', 'uid': 1003}, {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}]
    {'fname': 'John', 'lname': 'Cleese', 'uid': 1001}
    {'fname': 'Big', 'lname': 'Jones', 'uid': 1004}

    对原生不支持比较操作的对象排序

    from operator import attrgetter
    class user(object):
        def __init__(self,user_id):
            self.user_id = user_id
        def __repr__(self):
            return 'user({})'.format(self.user_id)
    users = [user(11),user(22),user(3)]
    print(users)
    print(sorted(users,key=lambda x:x.user_id))
    print(sorted(users,key=attrgetter('user_id')))  #使用attrgetter()函数来对实例化对象的参数值排序

    14、根据字段将记录分组

    itertools模块中的函数groupby()可以通过扫描序列找出拥有相同值或是参数key指定的函数所返回的值的序列项,并将它们分组,groupby()创建一个迭代器,而每次迭代时都回返回一个值,和一个子迭代器,这个子迭代器可以产生所有在该分组内具有该值的项。

    from operator import itemgetter
    from itertools import groupby
    rows = [
        {'a':'python','date':'07/01/2012'},
        {'a':'java','date':'08/11/2015'},
        {'a':'c++','date':'09/12/2018'},
        {'a':'perl','date':'17/06/2017'},
    ]
    rows.sort(key=itemgetter('date'))
    print(rows)
    for date,items in groupby(rows,key=itemgetter('date')):
        print(date)
        for i in items:
            print(' ',i)
    
    
    #
    [{'a': 'python', 'date': '07/01/2012'}, {'a': 'java', 'date': '08/11/2015'}, {'a': 'c++', 'date': '09/12/2018'}, {'a': 'perl', 'date': '17/06/2017'}]
    07/01/2012
      {'a': 'python', 'date': '07/01/2012'}
    08/11/2015
      {'a': 'java', 'date': '08/11/2015'}
    09/12/2018
      {'a': 'c++', 'date': '09/12/2018'}
    17/06/2017
      {'a': 'perl', 'date': '17/06/2017'}
    from collections import defaultdict
    #根据数据分组来构建一个一键多值的字典
    rows_date = defaultdict(list)
    for row in rows:
        rows_date[row['date']].append(row)
    
    print(rows_date)
    
    #
    defaultdict(<class 'list'>, {'07/01/2012': [{'a': 'python', 'date': '07/01/2012'}], '08/11/2015': [{'a': 'java', 'date': '08/11/2015'}], '09/12/2018': [{'a': 'c++', 'date': '09/12/2018'}], '17/06/2017': [{'a': 'perl', 'date': '17/06/2017'}]})

    15、筛选序列中的元素

    #使用列表推到式来赛选列表中符合要求的值
    In [37]: mylist = [1,2,-5,10,-8,3,-1]
    
    In [38]: list(i for i in mylist if i > 0)
    Out[38]: [1, 2, 10, 3]
    
    In [39]: list(i for i in mylist if i < 0)
    Out[39]: [-5, -8, -1]
    
    #如果输入的值非常多,可以先生成生成器然后筛选结果值
    In [43]: pos = (i for i in mylist if i > 0)
    
    In [46]: for i in pos:
        ...:     print(i)
        ...:     
    1
    2
    10
    3

    如果碰到筛选不标准的值如包含字符和数字,只筛选出数字呢?

    In [47]: values = [1,'3','-4','-',88,'N/A','python','5']
    
    In [48]: def is_int(val):
        ...:     try:
        ...:         x = int(val)
        ...:         return True
        ...:     except ValueError:
        ...:         return False
        ...:     
    #在筛选不规则的值式使用函数来过滤异常然后使用filter函数处理
    In [49]: list(filter(is_int,values))
    Out[49]: [1, '3', '-4', 88, '5']
    
    #用新值替换掉筛选不和规定的值
    In [50]: mylist = [1,4,-5,10,-7,2,3,-1]
    
    In [51]: list(i if i > 0 else 0 for i in mylist)
    Out[51]: [1, 4, 0, 10, 0, 2, 3, 0]
    
    In [52]: list(i if i < 0 else 0 for i in mylist)
    Out[52]: [0, 0, -5, 0, -7, 0, 0, -1]
    
    #还可以使用itertools.compress()来构建一个布尔选择器序列来赛选数据
    In [53]: addresses = ['one','two','three','four','five']
    
    In [54]: from itertools import compress
    
    In [55]: counts = [1,3,5,6,3]
    
    In [56]: more1 = [i > 3 for i in counts]
    
    In [57]: more1
    Out[57]: [False, False, True, True, False]
    
    In [58]: list(compress(addresses,more1))
    Out[58]: ['three', 'four']

    16、从字典中提取子集

    prices = {
        'ACME':45.23,
        'AAPL':612.78,
        'IBM':205.55,
        'HPQ':37.20,
        'FB':10.75,
    }
    #推到式创建值大于30的字典集合
    P1 = {key:value for key,value in prices.items() if value > 30}
    print(P1)
    #推倒式创建在tech中有的键的字典集合
    tech = {'ACME','IBM','HPQ','FB'}
    P2 = {key:value for key,value in prices.items() if key in tech}
    print(P2)
    
    #
    {'ACME': 45.23, 'AAPL': 612.78, 'IBM': 205.55, 'HPQ': 37.2}
    {'ACME': 45.23, 'IBM': 205.55, 'HPQ': 37.2, 'FB': 10.75}
    #使用dict()函数来创建会更加清晰,效率会是上面的两倍
    P3 = dict((key,value) for key,value in prices.items() if value > 100)
    print(P3)
    
    #
    {'AAPL': 612.78, 'IBM': 205.55}
    #多种实现方式,但这种方法会慢很多
    p4 ={key:prices[key] for key in prices.keys() & tech}
    print(p4)
    
    #
    {'ACME': 45.23, 'IBM': 205.55, 'FB': 10.75, 'HPQ': 37.2}

    17、将名称映射到序列的元素中

    collections.namedtuple()模块定义命名元组

    In [1]: from collections import namedtuple
    In [2]: subject = namedtuple('subject',['one','two','three'])
    In [3]: sub = subject(1,2,3)
    In [4]: sub
    Out[4]: subject(one=1, two=2, three=3)
    In [7]: sub.index(2)
    Out[7]: 1
    In [9]: sub.one
    Out[9]: 1
    In [10]: sub.two
    Out[10]: 2
    In [11]: sub.three
    Out[11]: 3
    In [12]: len(sub)
    Out[12]: 3
    In [13]: a,b,c=sub
    In [14]: a
    Out[14]: 1
    In [15]: c
    Out[15]: 3
    #如果要修改某个值可以使用_replace()方法
    In [17]: sub._replace(one=88)
    Out[17]: subject(one=88, two=2, three=3)

    18、同时对数据做转换和换算

    #使用生成器表达式将数据转换和换算
    In [19]: numbers = [1,2,3,4,5]
    In [20]: s = sum(x * x for x in numbers)
    In [21]: s
    Out[21]: 55
    In [26]: portfolio = [{'name':'GOOG','shares':50},{'name':'YHOO','shares':75},{'name':'AOL','shares':20},{'name':'SCOX','shares':65}]
    #对所有商品求和
    In [27]: sumnmber = sum(i['shares'] for i in portfolio)
    In [28]: sumnmber
    Out[28]: 210
    In [29]: minmber = min(i['shares'] for i in portfolio)
    In [30]: minmber
    Out[30]: 20
    In [31]: maxmber = max(i['shares'] for i in portfolio)
    In [32]: maxmber
    Out[32]: 75
    #也可以使用key参数来换算
    In [33]: min(portfolio,key=lambda s:s['shares'])
    Out[33]: {'name': 'AOL', 'shares': 20}

    19、将多个映射合并为单个映射

    In [34]: a = {'x':11,'z':33}
    
    In [35]: b = {'y':22,'z':44}
    #利用collections模块中的ChainMap类来实现多个字典的合并检查
    In [36]: from collections import ChainMap
    In [37]: c = ChainMap(a,b)
    In [38]: c
    Out[38]: ChainMap({'x': 11, 'z': 33}, {'y': 22, 'z': 44})
    In [39]: c['z'] = 33
    In [40]: c
    Out[40]: ChainMap({'x': 11, 'z': 33}, {'y': 22, 'z': 44})
    In [41]: c['z'] = 55
    In [42]: c
    Out[42]: ChainMap({'x': 11, 'z': 55}, {'y': 22, 'z': 44})
    In [43]: values = ChainMap()
    In [44]: values['x'] = 100
    In [45]: values = values.new_child()
    In [46]: values['x'] = 200
    In [47]: values
    Out[47]: ChainMap({'x': 200}, {'x': 100})
    In [48]: values = values.new_child()
    In [50]: values['x'] = 50
    In [51]: values
    Out[51]: ChainMap({'x': 50}, {'x': 200}, {'x': 100})
    In [52]: values['x']
    Out[52]: 50
    
    #利用字典的update()方法将多个字典合并一起,它会重新构建一个完整的字典
    In [58]: a = {'x':1,'z':3}
    In [59]: b = {'y':2,'z':4}
    In [60]: merged = dict(b)
    In [61]: merged.update(a)
    In [62]: merged
    Out[62]: {'y': 2, 'z': 3, 'x': 1}
    #ChainMap使用的是原始的字典,对原始数据的更改会映射到新建的对象上
    In [63]: a = {'x':1,'z':3}
    In [64]: b = {'y':2,'z':4}
    In [65]: merged = ChainMap(a,b)
    In [66]: merged
    Out[66]: ChainMap({'x': 1, 'z': 3}, {'y': 2, 'z': 4})
    In [67]: merged['x']
    Out[67]: 1
    In [68]: a['x'] = 100
    In [69]: merged['x']
    Out[69]: 100
    In [70]: merged
    Out[70]: ChainMap({'x': 100, 'z': 3}, {'y': 2, 'z': 4})
  • 相关阅读:
    《不完美的她》开播,网友:周公子对「白帽子」有点误会吧?
    【Web安全】浅谈缓存XSS漏洞
    十分钟教你轻松掌握「移动PE导出表」,快来学习!
    干货分享丨表哥带你学习导入表及导入表注入
    「原创」萌新也能看懂的ThinkPHP3.2.3漏洞分析
    精选好文丨简析对称加密、非对称加密和混合加密
    工程师成长道路语录(转)
    在线画UML图的工具
    6种有效的开发模型(转)
    空降经理人的挑战 (原创)
  • 原文地址:https://www.cnblogs.com/zhangxinqi/p/9729406.html
Copyright © 2011-2022 走看看