目标网站分析
我们要获取的就是这几个数值
程序实现
# -*- coding: utf-8 -*- """ @Datetime: 2019/2/28 @Author: Zhang Yafei """ # pip install -i https://pypi.tuna.tsinghua.edu.cn/simple xlrd selenium numpy pandas import os import random import re import time from concurrent.futures import ThreadPoolExecutor import numpy as np import pandas as pd import xlrd from selenium import webdriver # file_name = 'first_author.csv' file_name = 'corr_author.csv' def filter_rule(has_rule_list, author_type): if author_type == 'first': df = pd.read_csv('first.csv') elif author_type == 'corr': df = pd.read_csv('corr.csv') rules = df.rules.tolist() print('总共:{} 下载完成: {}'.format(len(set(rules)), len(set(has_rule_list)))) result_rule = set(rules) - set(has_rule_list) print('还剩:{}'.format(len(result_rule))) return list(result_rule) class WebOfScience(object): """ web od science 被引信息下载 """ def __init__(self): self.driver = webdriver.Chrome() self.num = 0 self.root_url = 'http://apps.webofknowledge.com' def get_h_index(self, rule): self.num += 1 try: wait_time = random.randint(3, 10) time.sleep(wait_time) select_id = '#set_{}_div a'.format(self.num) self.driver.get(self.root_url) self.driver.find_element_by_xpath('/html/body/div[9]/div/ul/li[3]/a').click() self.driver.find_element_by_id('value(input1)').clear() self.driver.find_element_by_id('value(input1)').send_keys(rule) self.driver.find_element_by_css_selector('#search-button').click() self.driver.find_element_by_css_selector(select_id).click() self.driver.find_element_by_css_selector( '#view_citation_report_image_placeholder > div > div > a > span').click() chuban_sum = self.driver.find_element_by_xpath('//*[@id="piChart-container"]/div/div[1]/div[1]/em').text h_index = self.driver.find_element_by_id('H_INDEX').text beiyin_sum = self.driver.find_element_by_xpath( '//*[@id="citation-report-display"]/table/tbody/tr[2]/td[3]/div/em[1]').text shiyin_wenxian = self.driver.find_element_by_css_selector( '#citation-report-display > table > tbody > tr:nth-child(2) > td:nth-child(4) > div > div:nth-child(2) > a.linkadjuster.snowplow-cited-rep-total-citing-articles > em').text meixiang_yinyong = self.driver.find_element_by_xpath( '//*[@id="citation-report-display"]/table/tbody/tr[2]/td[2]/div/em[2]').text quchu_ziyin = self.driver.find_element_by_xpath( '//*[@id="citation-report-display"]/table/tbody/tr[2]/td[3]/div/em[2]').text quchu_ziyin_fenxi = self.driver.find_element_by_xpath( '//*[@id="citation-report-display"]/table/tbody/tr[2]/td[4]/div/div[2]/a[1]/em').text data_dict = {'rules': [rule], 'chuban_sum': [chuban_sum], 'h_index': [h_index], 'beiyin_sum': [beiyin_sum], 'shiyin_wenxian': [shiyin_wenxian], 'meixiang_yinyong': [meixiang_yinyong], 'quchu_ziyin': [quchu_ziyin], 'quchu_ziyin_fenxi': [quchu_ziyin_fenxi]} # data_list = [{'rule': rule,'chuban_sum': chuban_sum,'h_index': h_index,'beiyin_sum': beiyin_sum,'shiyin_wenxian': shiyin_wenxian,'meixiang_yinyong': meixiang_yinyong,'quchu_ziyin': quchu_ziyin,'quchu_ziyin_fenxi': quchu_ziyin_fenxi}] df = pd.DataFrame(data=data_dict) df.to_csv(file_name, index=False, header=False, mode='a+') print('{0} {1} {2} {3} {4} {5} {6} {7} 下载完成'.format(rule, chuban_sum, h_index, beiyin_sum, shiyin_wenxian, meixiang_yinyong, quchu_ziyin, quchu_ziyin_fenxi)) except Exception as e: print(e) print(rule, '异常,正在重新下载') wait_time = random.randint(3, 20) time.sleep(wait_time) self.get_h_index() def read_example_data(): data = xlrd.open_workbook('example.xlsx') table = data.sheets()[0] nrows = table.nrows ncols = table.ncols search_rules = [] for row in range(nrows): name = table.cell(row, 0).value org = table.cell(row, 1).value search_rule = 'AU = ({0}) AND AD = ({1})'.format(name, org) search_rules.append(search_rule) return search_rules def extract_first_author(row): try: authors = re.match('[(.*?)]', row.作者机构).group(1) first_author = authors.split(';')[0] first_author_org = re.findall('](.*?),', row.作者机构)[0] # print(first_author, '-', first_author_org) except AttributeError: first_author = np.NAN first_author_org = np.NAN first_author_rule = 'AU = ({0}) AND AD = ({1})'.format(first_author, first_author_org) return first_author_rule def extract_reprint_author(row): try: reprint_authors = row['通讯作者/机构'] reprint_author = re.findall('(.*?) (reprint author), (.*?),', reprint_authors)[0][0] reprint_author_org = re.findall('(.*?) (reprint author), (.*?),', reprint_authors)[0][1] # print(reprint_author, '-', reprint_author_org) except TypeError: reprint_author = np.NAN reprint_author_org = np.NAN reprint_author_rule = 'AU = ({0}) AND AD = ({1})'.format(reprint_author, reprint_author_org) return reprint_author_rule def run(rule): web = WebOfScience() web.get_h_index(rule) web.driver.close() if __name__ == '__main__': # 0. 读取作者和机构信息,组成检索式 def make_rule(row): """ 根据作者和机构构造检索式 :param row: :return: rule 检索式 """ words = set(row.orgs.split(';')) AD = ' OR '.join(words) rule = 'AU = ({0}) AND AD = ({1})'.format(row.author, AD) return rule # df_first = pd.read_csv('firstauthor.txt', sep=' ', names=['DOI','author','orgs']) # df_corr = pd.read_csv('corresponding.txt', sep=' ', names=['DOI','author','orgs']) # rules = df_first.apply(make_rule, axis=1) # rules = df_corr.apply(make_rule, axis=1).tolist() # df_first['rules'] = rules # df_corr['rules'] = rules # if not os.path.exists('first.csv'): # df_first.to_csv('first.csv') # if not os.path.exists('corr.csv'): # df_corr.to_csv('corr.csv') # 2.根据检索式下载数据,并在每次运行之前过滤数据 # first_author = pd.read_csv(file_name) # rule_list = first_author.rules.tolist() corr_author = pd.read_csv(file_name) rule_list = corr_author.rules.tolist() if os.path.exists(file_name): rule_list = filter_rule(has_rule_list=rule_list, author_type='corr') # columns = ['rules', 'chuban_sum', 'h_index', 'beiyin_sum', 'shiyin_wenxian', 'meixiang_yinyong', 'quchu_ziyin', 'quchu_ziyin_fenxi'] # if not os.path.exists(file_name): # data = pd.DataFrame(columns=columns) # data.to_csv(file_name, index=False, mode='a') # 3. 多线程下载 pool = ThreadPoolExecutor(5) pool.map(run, rule_list) pool.shutdown() # 4. 合并第一作者数据表 # first = pd.read_csv('first.csv') # # data1 = pd.read_csv('data/first_0_1500.csv', encoding='utf-8') # data2 = pd.read_csv('data/first_1500_3000.csv', encoding='utf-8') # data3 = pd.read_csv('data/first_3000_4500.csv', encoding='utf-8') # data4 = pd.read_csv('data/first_4500_8200.csv', encoding='utf-8') # # first_concat = pd.concat([data1, data2, data3, data4], ignore_index=True) # # rule_list = first.rules.tolist() # not_rules = set(first.rules.tolist()) - set(first_concat.rules.tolist()) # # def judge_rule(row): # return row.rules in rule_list # # has_bool = first_concat.apply(judge_rule, axis=1) # # has_first = first_concat.loc[has_bool, :] # # has_first.to_csv('first_author.csv', index=False) # 5. 合并通讯作者数据表 # corr = pd.read_csv('corr.csv') # # data1 = pd.read_csv('data/corr_data1.csv', encoding='utf-8') # data2 = pd.read_csv('data/corr_data2.csv', encoding='utf-8') # data3 = pd.read_csv('data/corr_data3.csv', encoding='utf-8') # data4 = pd.read_csv('data/corr_data4.csv', encoding='utf-8') # # hash_columns = {'rules':'beiyin_sum', 'beiyin_sum': 'meixiang_yinyong', 'shiyin_wenxian': 'quchu_ziyin','meixiang_yinyong':'quchu_ziyin_fenxi', 'quchu_ziyin': 'rules', 'quchu_ziyin_fenxi': 'shiyin_wenxian'} # data2.rename(columns=hash_columns, inplace=True) # data3.rename(columns=hash_columns, inplace=True) # # corr_concat = pd.concat([data1, data2, data3, data4], ignore_index=True) # # rule_list = corr.rules.tolist() # not_rules = set(corr.rules.tolist()) - set(corr_concat.rules.tolist()) # # 过滤出已经下载的检索式 # has_bool = corr_concat.apply(lambda row: row.rules in rule_list, axis=1) # has_corr = corr_concat.loc[has_bool, :] # # columns = ['rules', 'chuban_sum', 'h_index', 'beiyin_sum', 'shiyin_wenxian', 'meixiang_yinyong', 'quchu_ziyin', 'quchu_ziyin_fenxi'] # has_corr = has_corr.loc[:, columns] # # has_corr.to_csv('corr_author.csv', index=False) # 6. 将下载的数据信息(第一作者)合并到数据表 # first_data = pd.read_csv('first.csv') # # result_data = pd.read_csv('first_author.csv') # # first_data['出版物总数'] = np.NAN # first_data['被引频次总计'] = np.NAN # first_data['施引文献'] = np.NAN # first_data['第一作者H指数'] = np.NAN # first_data['每项平均引用次数'] = np.NAN # first_data['去除自引'] = np.NAN # first_data['去除自引(分析)'] = np.NAN # # # def merge_data(row): # """ # 合并数据表 # :param row: # :return: # """ # first_data.loc[first_data.rules == row.rules, '出版物总数'] = row.chuban_sum # first_data.loc[first_data.rules == row.rules, '第一作者H指数'] = row.h_index # first_data.loc[first_data.rules == row.rules, '被引频次总计'] = row.beiyin_sum # first_data.loc[first_data.rules == row.rules, '施引文献'] = row.shiyin_wenxian # first_data.loc[first_data.rules == row.rules, '每项平均引用次数'] = row.meixiang_yinyong # first_data.loc[first_data.rules == row.rules, '去除自引'] = row.quchu_ziyin # first_data.loc[first_data.rules == row.rules, '去除自引(分析)'] = row.quchu_ziyin_fenxi # # # result_data.apply(merge_data, axis=1) # # # 删除多列 # # del_columns = ['Unnamed: 0', '出版物总数', '被引频次总计', '施引文献', '每项平均引用次数', '去除自引', '去除自引(分析)'] # # first_data = first_data.drop(del_columns, axis=1) # # columns = ['DOI', 'author', 'orgs', 'rules', '第一作者H指数', '出版物总数', '被引频次总计', '施引文献', '每项平均引用次数', '去除自引', '去除自引(分析)'] # first_data.columns = columns # # writer = pd.ExcelWriter('first_author_result.xlsx') # first_data.to_excel(writer, 'table', index=False) # writer.save() # 7. 将下载的数据信息(通讯作者)合并到数据表 corr_data = pd.read_csv('corr.csv') result_data = pd.read_csv('corr_author.csv') corr_data['出版物总数'] = np.NAN corr_data['被引频次总计'] = np.NAN corr_data['施引文献'] = np.NAN corr_data['第一作者H指数'] = np.NAN corr_data['每项平均引用次数'] = np.NAN corr_data['去除自引'] = np.NAN corr_data['去除自引(分析)'] = np.NAN def merge_data(row): """ 合并数据表 :param row: :return: """ corr_data.loc[corr_data.rules == row.rules, '出版物总数'] = row.chuban_sum corr_data.loc[corr_data.rules == row.rules, '第一作者H指数'] = row.h_index corr_data.loc[corr_data.rules == row.rules, '被引频次总计'] = row.beiyin_sum corr_data.loc[corr_data.rules == row.rules, '施引文献'] = row.shiyin_wenxian corr_data.loc[corr_data.rules == row.rules, '每项平均引用次数'] = row.meixiang_yinyong corr_data.loc[corr_data.rules == row.rules, '去除自引'] = row.quchu_ziyin corr_data.loc[corr_data.rules == row.rules, '去除自引(分析)'] = row.quchu_ziyin_fenxi result_data.apply(merge_data, axis=1) # 保存到excel中 writer = pd.ExcelWriter('corr_author_result.xlsx') corr_data.to_excel(writer, 'table', index=False) writer.save() # 8. 以DOI号为标识将多个通讯作者合并到一行 corr_result = corr_data.drop_duplicates('DOI', keep='first', inplace=False) corr_result.drop(labels=['第一作者H指数', '出版物总数', '被引频次总计', '施引文献', '每项平均引用次数', '去除自引', '去除自引(分析)'], axis=1, inplace=True) # 重置索引 corr_result.reset_index(inplace=True) corr_result_DOI = corr_result.loc[:, 'DOI'] def merge_corr(row): """ 合并多个通讯作者H指数 修改corr_result 将每一个通讯作者指数添加新的一列 :param row: :return: """ h_index = corr_data.loc[corr_data.DOI == row.DOI, '第一作者H指数'].tolist() print(len(h_index)) if len(h_index) == 1: try: corr_result.loc[corr_result.DOI == row.DOI, 'h1_index'] = int(h_index[0]) except ValueError as e: corr_result.loc[corr_result.DOI == row.DOI, 'h1_index'] = h_index[0] else: for i in range(len(h_index)): try: corr_result.loc[corr_result.DOI == row.DOI, 'h{}_index'.format(i + 1)] = int(h_index[i]) except ValueError as e: corr_result.loc[corr_result.DOI == row.DOI, 'h{}_index'.format(i + 1)] = h_index[i] corr_result_DOI.apply(merge_corr, axis=1) # 列数据迁移 def reset_h1(row): if np.isnan(row.h1_index) or not row.h1_index: corr_result.loc[corr_result.DOI == row.DOI, 'h1_index'] = row.h1_inrex corr_result.apply(reset_h1, axis=1) corr_result.drop('h1_inrex', axis=1, inplace=True) # 重命名列 columns = {'h2_inrex': 'h2_index', 'h3_inrex': 'h3_index', 'h4_inrex': 'h4_index', 'h5_inrex': 'h5_index', 'h6_inrex': 'h6_index', 'h7_inrex': 'h7_index', 'h8_inrex': 'h8_index'} corr_result.rename(columns=columns) # 9. 计算多个通讯作者的h指数的最大值, 平均值, 和 def add_max_sum_mean(row): """ 求出多个通讯作者h指数的和、最大值, 平均值 :param row: :return: """ h_index = list(row)[5:] h_index = list(filter(lambda x: not np.isnan(x), h_index)) print(h_index) if h_index: corr_result.loc[corr_result.DOI == row.DOI, 'max'] = np.max(h_index) corr_result.loc[corr_result.DOI == row.DOI, 'sum'] = sum(h_index) corr_result.loc[corr_result.DOI == row.DOI, 'mean'] = np.mean(h_index) corr_result.apply(add_max_sum_mean, axis=1) corr_result.drop('index', axis=1, inplace=True) corr_result.drop(['author','orgs','rules'], axis=1, inplace=True) writer = pd.ExcelWriter('corr_author_sum_max_mean_result.xlsx') corr_result.to_excel(writer, 'table', index=False) writer.save() # 10. 只保留h指数最大值 def keep_max(row): h_max = corr_result.loc[corr_result.DOI == row.DOI, 'max'].values[0] return row['第一作者H指数'] == h_max corr_max_bool = corr_data.apply(keep_max, axis=1) corr_max_result = corr_data.loc[corr_max_bool, :] # corr_max_result.rename(columns={'第一作者H指数':'通讯作者H指数'}, inplace=True) writer = pd.ExcelWriter('corr_author_max_result.xlsx') corr_max_result.to_excel(writer, 'table', index=False) writer.save()