zoukankan      html  css  js  c++  java
  • Uva

    The decimal expansion of the fraction 1/33 is tex2html_wrap_inline43 , where the tex2html_wrap_inline45 is used to indicate that the cycle 03 repeats indefinitely with no intervening digits. In fact, the decimal expansion of every rational number (fraction) has a repeating cycle as opposed to decimal expansions of irrational numbers, which have no such repeating cycles.

    Examples of decimal expansions of rational numbers and their repeating cycles are shown below. Here, we use parentheses to enclose the repeating cycle rather than place a bar over the cycle.

    tabular23

    Write a program that reads numerators and denominators of fractions and determines their repeating cycles.

    For the purposes of this problem, define a repeating cycle of a fraction to be the first minimal length string of digits to the right of the decimal that repeats indefinitely with no intervening digits. Thus for example, the repeating cycle of the fraction 1/250 is 0, which begins at position 4 (as opposed to 0 which begins at positions 1 or 2 and as opposed to 00 which begins at positions 1 or 4).

    Input

    Each line of the input file consists of an integer numerator, which is nonnegative, followed by an integer denominator, which is positive. None of the input integers exceeds 3000. End-of-file indicates the end of input.

    Output

    For each line of input, print the fraction, its decimal expansion through the first occurrence of the cycle to the right of the decimal or 50 decimal places (whichever comes first), and the length of the entire repeating cycle.

    In writing the decimal expansion, enclose the repeating cycle in parentheses when possible. If the entire repeating cycle does not occur within the first 50 places, place a left parenthesis where the cycle begins - it will begin within the first 50 places - and place ``...)" after the 50th digit.

    Print a blank line after every test case.

    Sample Input

    76 25
    5 43
    1 397

    Sample Output

    76/25 = 3.04(0)
       1 = number of digits in repeating cycle
    
    5/43 = 0.(116279069767441860465)
       21 = number of digits in repeating cycle
    
    1/397 = 0.(00251889168765743073047858942065491183879093198992...)
       99 = number of digits in repeating cycle
    

    AC代码:

    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    
    int r[3005], u[3005], s[3005];
    
    int main()
    {
    	int n, m, t;
    	while (~scanf("%d %d", &n, &m)) {
    		t = n;
    		memset(r, 0, sizeof(r));
    		memset(u, 0, sizeof(u));
    		int count = 0;
    		r[count++] = n / m;
    		n %= m;
    		while (!u[n] && n) {
    			u[n] = count;
    			s[count] = n;
    			r[count++] = 10 * n / m;
    			n = 10 * n % m;
    		}
    		printf("%d/%d = %d", t, m, r[0]);
    		printf(".");
    		for (int i = 1; i < count && i <= 50; ++i) {
    			if (n && s[i] == n) printf("(");
    			printf("%d", r[i]);
    		}
    		if (!n) printf("(0");
    		if (count > 50) printf("...");
    		printf(")
    ");
    		printf("   %d = number of digits in repeating cycle
    
    ", !n ? 1 : count - u[n]);
    	}
    	return 0;
    }
    



  • 相关阅读:
    celery完成简单的定时任务
    看直播软件源码,如何实现直播系统业务以及技术注意点分析
    直播后台开发,php直播源码这样选择才不会出错
    直播平台源代码的基础功能和首屏优化,小白必看点
    开发短视频软件,短视频源码具有无限的开发潜力
    直播带货源码的安全稳定性到底有多重要?
    搭建直播平台,选对视频直播系统源码有多重要?
    提升短视频应用体验,短视频源码要做哪些完善?
    全世界都在用的编程语言,php直播源码你还不知道就out了
    直播带货系统源码如何举稳直播带货风潮下的大旗
  • 原文地址:https://www.cnblogs.com/zhangyaoqi/p/4591621.html
Copyright © 2011-2022 走看看