zoukankan      html  css  js  c++  java
  • python基础之数据类型(二)

     

    Python3 元组

    Python 的元组与列表类似,不同之处在于元组的元素不能修改。

    元组使用小括号,列表使用方括号。

    元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可。

    不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。

    定义:与列表类似,只不过[]改成()
    特性:
    1.可存放多个值
    2.不可变
    3.
    按照从左到右的顺序定义元组元素,下标从0开始顺序访问,有序
    基本操作:
    • 索引
    • 切片
    • 循环
    • 长度
    • 包含
    lass tuple(object):
        """
        tuple() -> empty tuple
        tuple(iterable) -> tuple initialized from iterable's items
        
        If the argument is a tuple, the return value is the same object.
        """
        def count(self, value): # real signature unknown; restored from __doc__
            """ T.count(value) -> integer -- return number of occurrences of value """
            return 0
    
        def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
            """
            T.index(value, [start, [stop]]) -> integer -- return first index of value.
            Raises ValueError if the value is not present.
            """
            return 0
    
        def __add__(self, y): # real signature unknown; restored from __doc__
            """ x.__add__(y) <==> x+y """
            pass
    
        def __contains__(self, y): # real signature unknown; restored from __doc__
            """ x.__contains__(y) <==> y in x """
            pass
    
        def __eq__(self, y): # real signature unknown; restored from __doc__
            """ x.__eq__(y) <==> x==y """
            pass
    
        def __getattribute__(self, name): # real signature unknown; restored from __doc__
            """ x.__getattribute__('name') <==> x.name """
            pass
    
        def __getitem__(self, y): # real signature unknown; restored from __doc__
            """ x.__getitem__(y) <==> x[y] """
            pass
    
        def __getnewargs__(self, *args, **kwargs): # real signature unknown
            pass
    
        def __getslice__(self, i, j): # real signature unknown; restored from __doc__
            """
            x.__getslice__(i, j) <==> x[i:j]
                       
                       Use of negative indices is not supported.
            """
            pass
    
        def __ge__(self, y): # real signature unknown; restored from __doc__
            """ x.__ge__(y) <==> x>=y """
            pass
    
        def __gt__(self, y): # real signature unknown; restored from __doc__
            """ x.__gt__(y) <==> x>y """
            pass
    
        def __hash__(self): # real signature unknown; restored from __doc__
            """ x.__hash__() <==> hash(x) """
            pass
    
        def __init__(self, seq=()): # known special case of tuple.__init__
            """
            tuple() -> empty tuple
            tuple(iterable) -> tuple initialized from iterable's items
            
            If the argument is a tuple, the return value is the same object.
            # (copied from class doc)
            """
            pass
    
        def __iter__(self): # real signature unknown; restored from __doc__
            """ x.__iter__() <==> iter(x) """
            pass
    
        def __len__(self): # real signature unknown; restored from __doc__
            """ x.__len__() <==> len(x) """
            pass
    
        def __le__(self, y): # real signature unknown; restored from __doc__
            """ x.__le__(y) <==> x<=y """
            pass
    
        def __lt__(self, y): # real signature unknown; restored from __doc__
            """ x.__lt__(y) <==> x<y """
            pass
    
        def __mul__(self, n): # real signature unknown; restored from __doc__
            """ x.__mul__(n) <==> x*n """
            pass
    
        @staticmethod # known case of __new__
        def __new__(S, *more): # real signature unknown; restored from __doc__
            """ T.__new__(S, ...) -> a new object with type S, a subtype of T """
            pass
    
        def __ne__(self, y): # real signature unknown; restored from __doc__
            """ x.__ne__(y) <==> x!=y """
            pass
    
        def __repr__(self): # real signature unknown; restored from __doc__
            """ x.__repr__() <==> repr(x) """
            pass
    
        def __rmul__(self, n): # real signature unknown; restored from __doc__
            """ x.__rmul__(n) <==> n*x """
            pass
    
        def __sizeof__(self): # real signature unknown; restored from __doc__
            """ T.__sizeof__() -- size of T in memory, in bytes """
            pass
    
    tuple
    

    如下实例:

    tup1 = ('Google', 'Runoob', 1997, 2000);
    tup2 = (1, 2, 3, 4, 5 );
    tup3 = "a", "b", "c", "d";
    

     创建空元组

    tup1 = ();
    

     元组中只包含一个元素时,需要在元素后面添加逗号

    tup1 = (50,);
    

    元组与字符串类似,下标索引从0开始,可以进行截取,组合等。


    访问元组

    元组可以使用下标索引来访问元组中的值,如下实例:

    #!/usr/bin/python3
    
    tup1 = ('Google', 'Baidu', 1997, 2000)
    tup2 = (1, 2, 3, 4, 5, 6, 7 )
    
    print ("tup1[0]: ", tup1[0])
    print ("tup2[1:5]: ", tup2[1:5])
    

     以上实例输出结果:

    tup1[0]:  Google
    tup2[1:5]:  (2, 3, 4, 5)
    

    修改元组

    元组中的元素值是不允许修改的,但我们可以对元组进行连接组合,如下实例:

    #!/usr/bin/python3
    
    tup1 = (12, 34.56);
    tup2 = ('abc', 'xyz')
    
    # 以下修改元组元素操作是非法的。
    # tup1[0] = 100
    
    # 创建一个新的元组
    tup3 = tup1 + tup2;
    print (tup3)
    

     以上实例输出结果:

    (12, 34.56, 'abc', 'xyz')
    

    删除元组

    元组中的元素值是不允许删除的,但我们可以使用del语句来删除整个元组,如下实例:

    #!/usr/bin/python3
    
    tup = ('Google', 'Baidu', 1997, 2000)
    
    print (tup)
    del tup;
    print ("删除后的元组 tup : ")
    print (tup)
    

     以上实例元组被删除后,输出变量会有异常信息,输出如下所示:

    删除后的元组 tup : 
    Traceback (most recent call last):
      File "test.py", line 8, in <module>
        print (tup)
    NameError: name 'tup' is not defined
    

    元组运算符

    与字符串一样,元组之间可以使用 + 号和 * 号进行运算。这就意味着他们可以组合和复制,运算后会生成一个新的元组。

    Python 表达式结果描述
    len((1, 2, 3)) 3 计算元素个数
    (1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) 连接
    ['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] 复制
    3 in (1, 2, 3) True 元素是否存在
    for x in (1, 2, 3): print x, 1 2 3 迭代

    元组索引,截取

    因为元组也是一个序列,所以我们可以访问元组中的指定位置的元素,也可以截取索引中的一段元素,如下所示:

    元组:

    L = ('Google', 'Taobao', 'Baidu')
    

     Python 表达式

     结果描述
    L[2] 'Baidu' 读取第三个元素
    L[-2] 'Taobao' 反向读取;读取倒数第二个元素
    L[1:] ('Taobao', 'Baidu') 截取元素,从第二个开始后的所有元素。

    运行实例如下:

    >>> L = ('Google', 'Taobao', 'Baidu')
    >>> L[2]
    'Baidu'
    >>> L[-2]
    'Taobao'
    >>> L[1:]
    ('Taobao', 'Baidu')
    

    元组内置函数

    Python元组包含了以下内置函数

    序号方法及描述实例
    1 len(tuple)
    计算元组元素个数。
    >>> tuple1 = ('Google', 'QQ', 'Taobao')
    >>> len(tuple1)
    3
    >>>
    2 max(tuple)
    返回元组中元素最大值。
    >>> tuple2 = ('5', '4', '8')
    >>> max(tuple2)
    '8'
    >>>
    3 min(tuple)
    返回元组中元素最小值。
    >>> tuple2 = ('5', '4', '8')
    >>> min(tuple2)
    '4'
    >>>
    4 tuple(seq)
    将列表转换为元组。
    >>> list1= ['Google', 'Taobao', 'QQ', 'Baidu']
    >>> tuple1=tuple(list1)
    >>> tuple1
    ('Google', 'Taobao', 'QQ', 'Baidu')

    Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

    最后来看一个“可变的”tuple:

    >>> t = ('a', 'b', ['A', 'B'])
    >>> t[2][0] = 'X'
    >>> t[2][1] = 'Y'
    >>> t
    ('a', 'b', ['X', 'Y'])
    

    这个tuple定义的时候有3个元素,分别是'a''b'和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?

    别急,我们先看看定义的时候tuple包含的3个元素:

    tuple-0

    当我们把list的元素'A''B'修改为'X''Y'后,tuple变为:

    tuple-1

    表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的“不变”是说,tuple的每个元素,指向永远不变。即指向'a',就不能改成指向'b',指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!

    理解了“指向不变”后,要创建一个内容也不变的tuple怎么做?那就必须保证tuple的每一个元素本身也不能变。

    Python3 字典

    字典是另一种可变容器模型,且可存储任意类型对象。

    Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

    常用操作:

    • 索引
    • 新增
    • 删除
    • 键、值、键值对
    • 循环
    • 长度
    class dict(object):
        """
        dict() -> new empty dictionary
        dict(mapping) -> new dictionary initialized from a mapping object's
            (key, value) pairs
        dict(iterable) -> new dictionary initialized as if via:
            d = {}
            for k, v in iterable:
                d[k] = v
        dict(**kwargs) -> new dictionary initialized with the name=value pairs
            in the keyword argument list.  For example:  dict(one=1, two=2)
        """
    
        def clear(self): # real signature unknown; restored from __doc__
            """ 清除内容 """
            """ D.clear() -> None.  Remove all items from D. """
            pass
    
        def copy(self): # real signature unknown; restored from __doc__
            """ 浅拷贝 """
            """ D.copy() -> a shallow copy of D """
            pass
    
        @staticmethod # known case
        def fromkeys(S, v=None): # real signature unknown; restored from __doc__
            """
            dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
            v defaults to None.
            """
            pass
    
        def get(self, k, d=None): # real signature unknown; restored from __doc__
            """ 根据key获取值,d是默认值 """
            """ D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None. """
            pass
    
        def has_key(self, k): # real signature unknown; restored from __doc__
            """ 是否有key """
            """ D.has_key(k) -> True if D has a key k, else False """
            return False
    
        def items(self): # real signature unknown; restored from __doc__
            """ 所有项的列表形式 """
            """ D.items() -> list of D's (key, value) pairs, as 2-tuples """
            return []
    
        def iteritems(self): # real signature unknown; restored from __doc__
            """ 项可迭代 """
            """ D.iteritems() -> an iterator over the (key, value) items of D """
            pass
    
        def iterkeys(self): # real signature unknown; restored from __doc__
            """ key可迭代 """
            """ D.iterkeys() -> an iterator over the keys of D """
            pass
    
        def itervalues(self): # real signature unknown; restored from __doc__
            """ value可迭代 """
            """ D.itervalues() -> an iterator over the values of D """
            pass
    
        def keys(self): # real signature unknown; restored from __doc__
            """ 所有的key列表 """
            """ D.keys() -> list of D's keys """
            return []
    
        def pop(self, k, d=None): # real signature unknown; restored from __doc__
            """ 获取并在字典中移除 """
            """
            D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
            If key is not found, d is returned if given, otherwise KeyError is raised
            """
            pass
    
        def popitem(self): # real signature unknown; restored from __doc__
            """ 获取并在字典中移除 """
            """
            D.popitem() -> (k, v), remove and return some (key, value) pair as a
            2-tuple; but raise KeyError if D is empty.
            """
            pass
    
        def setdefault(self, k, d=None): # real signature unknown; restored from __doc__
            """ 如果key不存在,则创建,如果存在,则返回已存在的值且不修改 """
            """ D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D """
            pass
    
        def update(self, E=None, **F): # known special case of dict.update
            """ 更新
                {'name':'alex', 'age': 18000}
                [('name','sbsbsb'),]
            """
            """
            D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
            If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
            If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
            In either case, this is followed by: for k in F: D[k] = F[k]
            """
            pass
    
        def values(self): # real signature unknown; restored from __doc__
            """ 所有的值 """
            """ D.values() -> list of D's values """
            return []
    
        def viewitems(self): # real signature unknown; restored from __doc__
            """ 所有项,只是将内容保存至view对象中 """
            """ D.viewitems() -> a set-like object providing a view on D's items """
            pass
    
        def viewkeys(self): # real signature unknown; restored from __doc__
            """ D.viewkeys() -> a set-like object providing a view on D's keys """
            pass
    
        def viewvalues(self): # real signature unknown; restored from __doc__
            """ D.viewvalues() -> an object providing a view on D's values """
            pass
    
        def __cmp__(self, y): # real signature unknown; restored from __doc__
            """ x.__cmp__(y) <==> cmp(x,y) """
            pass
    
        def __contains__(self, k): # real signature unknown; restored from __doc__
            """ D.__contains__(k) -> True if D has a key k, else False """
            return False
    
        def __delitem__(self, y): # real signature unknown; restored from __doc__
            """ x.__delitem__(y) <==> del x[y] """
            pass
    
        def __eq__(self, y): # real signature unknown; restored from __doc__
            """ x.__eq__(y) <==> x==y """
            pass
    
        def __getattribute__(self, name): # real signature unknown; restored from __doc__
            """ x.__getattribute__('name') <==> x.name """
            pass
    
        def __getitem__(self, y): # real signature unknown; restored from __doc__
            """ x.__getitem__(y) <==> x[y] """
            pass
    
        def __ge__(self, y): # real signature unknown; restored from __doc__
            """ x.__ge__(y) <==> x>=y """
            pass
    
        def __gt__(self, y): # real signature unknown; restored from __doc__
            """ x.__gt__(y) <==> x>y """
            pass
    
        def __init__(self, seq=None, **kwargs): # known special case of dict.__init__
            """
            dict() -> new empty dictionary
            dict(mapping) -> new dictionary initialized from a mapping object's
                (key, value) pairs
            dict(iterable) -> new dictionary initialized as if via:
                d = {}
                for k, v in iterable:
                    d[k] = v
            dict(**kwargs) -> new dictionary initialized with the name=value pairs
                in the keyword argument list.  For example:  dict(one=1, two=2)
            # (copied from class doc)
            """
            pass
    
        def __iter__(self): # real signature unknown; restored from __doc__
            """ x.__iter__() <==> iter(x) """
            pass
    
        def __len__(self): # real signature unknown; restored from __doc__
            """ x.__len__() <==> len(x) """
            pass
    
        def __le__(self, y): # real signature unknown; restored from __doc__
            """ x.__le__(y) <==> x<=y """
            pass
    
        def __lt__(self, y): # real signature unknown; restored from __doc__
            """ x.__lt__(y) <==> x<y """
            pass
    
        @staticmethod # known case of __new__
        def __new__(S, *more): # real signature unknown; restored from __doc__
            """ T.__new__(S, ...) -> a new object with type S, a subtype of T """
            pass
    
        def __ne__(self, y): # real signature unknown; restored from __doc__
            """ x.__ne__(y) <==> x!=y """
            pass
    
        def __repr__(self): # real signature unknown; restored from __doc__
            """ x.__repr__() <==> repr(x) """
            pass
    
        def __setitem__(self, i, y): # real signature unknown; restored from __doc__
            """ x.__setitem__(i, y) <==> x[i]=y """
            pass
    
        def __sizeof__(self): # real signature unknown; restored from __doc__
            """ D.__sizeof__() -> size of D in memory, in bytes """
            pass
    
        __hash__ = None
    
    dict
    
    定义:{key1:value1,key2:value2},key-value结构,key必须可hash
    特性:
    1.可存放多个值
    2.可修改指定key对应的值,可变
    3.无

    如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

    >>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
    >>> d['Michael']
    95
    

    为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

    第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字。无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

    dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

    你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

    由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

    >>> d['Jack'] = 90
    >>> d['Jack']
    90
    >>> d['Jack'] = 88
    >>> d['Jack']
    88
    

    如果key不存在,dict就会报错:

    >>> d['Thomas']
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    KeyError: 'Thomas'
    

     要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

    >>> 'Thomas' in d
    False
    

     二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

    >>> d.get('Thomas')
    >>> d.get('Thomas', -1)
    -1
    

    注意:返回None的时候Python的交互式命令行不显示结果。

    要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

    >>> d.pop('Bob')
    75
    >>> d
    {'Michael': 95, 'Tracy': 85}
    

    请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

    和list比较,dict有以下几个特点:

    1. 查找和插入的速度极快,不会随着key的增加而变慢;
    2. 需要占用大量的内存,内存浪费多。

    而list相反:

    1. 查找和插入的时间随着元素的增加而增加;
    2. 占用空间小,浪费内存很少。

    所以,dict是用空间来换取时间的一种方法。

    dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象

    这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

    要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

    >>> key = [1, 2, 3]
    >>> d[key] = 'a list'
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: unhashable type: 'list'
    

    字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中 ,格式如下所示:

    d = {key1 : value1, key2 : value2 }
    

    键必须是唯一的,但值则不必

    值可以取任何数据类型,但键必须是不可变的,如字符串,数字或元组。

    一个简单的字典实例:

    dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}
    

     也可如此创建字典:

    dict1 = { 'abc': 456 };
    dict2 = { 'abc': 123, 98.6: 37 };
    

    访问字典里的值

    把相应的键放入熟悉的方括弧,如下实例:

    #!/usr/bin/python3
    
    dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
    
    print ("dict['Name']: ", dict['Name'])
    print ("dict['Age']: ", dict['Age'])
    

     以上实例输出结果:

    dict['Name']:  Tom
    dict['Age']:  7
    

     如果用字典里没有的键访问数据,会输出错误如下:

    #!/usr/bin/python3
     
    dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'};
     
    print ("dict['Alice']: ", dict['Alice'])
    

     以上实例输出结果:

    Traceback (most recent call last):
      File "test.py", line 5, in <module>
        print ("dict['Alice']: ", dict['Alice'])
    KeyError: 'Alice'
    

    修改字典

    向字典添加新内容的方法是增加新的键/值对,修改或删除已有键/值对如下实例:

    #!/usr/bin/python3
    
    dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
    
    dict['Age'] = 8;               # 更新 Age
    dict['School'] = "python教程"  # 添加信息
    
    
    print ("dict['Age']: ", dict['Age'])
    print ("dict['School']: ", dict['School'])
    

     以上实例输出结果:

    dict['Age']:  8
    dict['School']:  python教程
    

    删除字典元素

    能删单一的元素也能清空字典,清空只需一项操作。

    显示删除一个字典用del命令,如下实例:

    #!/usr/bin/python3
    
    dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
    
    del dict['Name'] # 删除键 'Name'
    dict.clear()     # 删除字典
    del dict         # 删除字典
    
    print ("dict['Age']: ", dict['Age'])
    print ("dict['School']: ", dict['School'])
    

     但这会引发一个异常,因为用执行 del 操作后字典不再存在:

    Traceback (most recent call last):
      File "test.py", line 9, in <module>
        print ("dict['Age']: ", dict['Age'])
    TypeError: 'type' object is not subscriptable
    

    注:del() 方法后面也会讨论。

    字典键的特性

    字典值可以没有限制地取任何python对象,既可以是标准的对象,也可以是用户定义的,但键不行。

    两个重要的点需要记住:

    1)不允许同一个键出现两次。创建时如果同一个键被赋值两次,后一个值会被记住,如下实例:

    #!/usr/bin/python3
    
    dict = {'Name': 'Tom', 'Age': 7, 'Name': '小菜鸟'}
    
    print ("dict['Name']: ", dict['Name'])
    

     以上实例输出结果:

    dict['Name']:  小菜鸟
    

     2)键必须不可变,所以可以用数字,字符串或元组充当,而用列表就不行,如下实例:

    #!/usr/bin/python3
    
    dict = {['Name']: 'Tom', 'Age': 7}
    
    print ("dict['Name']: ", dict['Name'])
    

     以上实例输出结果:

    Traceback (most recent call last):
      File "test.py", line 3, in <module>
        dict = {['Name']: 'Runoob', 'Age': 7}
    TypeError: unhashable type: 'list'
    

    字典内置函数&方法

    Python字典包含了以下内置函数:

    序号函数及描述实例
    1 len(dict)
    计算字典元素个数,即键的总数。
    >>> dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
    >>> len(dict)
    3
    2 str(dict)
    输出字典以可打印的字符串表示。
    >>> dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
    >>> str(dict)
    "{'Name': 'Runoob', 'Class': 'First', 'Age': 7}"
    3 type(variable)
    返回输入的变量类型,如果变量是字典就返回字典类型。
    >>> dict = {'Name': 'Tom', 'Age': 7, 'Class': 'First'}
    >>> type(dict)
    <class 'dict'>

    Python字典包含了以下内置方法:

    序号函数及描述
    1 radiansdict.clear()
    删除字典内所有元素
    2 radiansdict.copy()
    返回一个字典的浅复制
    3 radiansdict.fromkeys()
    创建一个新字典,以序列seq中元素做字典的键,val为字典所有键对应的初始值
    4 radiansdict.get(key, default=None)
    返回指定键的值,如果值不在字典中返回default值
    5 key in dict
    如果键在字典dict里返回true,否则返回false
    6 radiansdict.items()
    以列表返回可遍历的(键, 值) 元组数组
    7 radiansdict.keys()
    以列表返回一个字典所有的键
    8 radiansdict.setdefault(key, default=None)
    和get()类似, 但如果键不存在于字典中,将会添加键并将值设为default
    9 radiansdict.update(dict2)
    把字典dict2的键/值对更新到dict里
    10 radiansdict.values()
    以列表返回字典中的所有值

    其他

    1、for循环
    用户按照顺序循环可迭代对象中的内容,
    PS:break、continue
    li = [11,22,33,44]
    for item in li:
        print(item)
    
    2、enumrate
    为可迭代的对象添加序号
    li = [11,22,33]
    for k,v in enumerate(li, 1):
        print(k,v)
    
    3、range和xrange
    指定范围,生成指定的数字
    print range(1, 10)
    # 结果:[1, 2, 3, 4, 5, 6, 7, 8, 9]
     
    print(range(1, 10, 2))
    # 结果:[1, 3, 5, 7, 9]
     
    print(range(30, 0, -2))
    # 结果:[30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2]  
    

    Set(集合)

    集合(set)是一个无序不重复元素的序列。

    基本功能是进行成员关系测试和删除重复元素。

    可以使用大括号({})或者 set()函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。

    定义:由不同元素组成的集合,集合中是一组无序排列的可hash值,可以作为字典的key
    特性:
    1.集合的目的是将不同的值存放到一起,不同的集合间用来做关系运算,无需纠结于集合中单个值

    集合常用操作:关系运算

       in
    not in
    ==
    !=
    <,<=
    >,>=
    |,|=:合集
    &.&=:交集
    -,-=:差集
    ^,^=:对称差分

    集合工厂函数set()

    class set(object):
        """
        set() -> new empty set object
        set(iterable) -> new set object
        
        Build an unordered collection of unique elements.
        """
        def add(self, *args, **kwargs): # real signature unknown
            """
            Add an element to a set.
            
            This has no effect if the element is already present.
            """
            pass
    
        def clear(self, *args, **kwargs): # real signature unknown
            """ Remove all elements from this set. """
            pass
    
        def copy(self, *args, **kwargs): # real signature unknown
            """ Return a shallow copy of a set. """
            pass
    
        def difference(self, *args, **kwargs): # real signature unknown
            """
            相当于s1-s2
            
            Return the difference of two or more sets as a new set.
            
            (i.e. all elements that are in this set but not the others.)
            """
            pass
    
        def difference_update(self, *args, **kwargs): # real signature unknown
            """ Remove all elements of another set from this set. """
            pass
    
        def discard(self, *args, **kwargs): # real signature unknown
            """
            与remove功能相同,删除元素不存在时不会抛出异常
            
            Remove an element from a set if it is a member.
            
            If the element is not a member, do nothing.
            """
            pass
    
        def intersection(self, *args, **kwargs): # real signature unknown
            """
            相当于s1&s2
            
            Return the intersection of two sets as a new set.
            
            (i.e. all elements that are in both sets.)
            """
            pass
    
        def intersection_update(self, *args, **kwargs): # real signature unknown
            """ Update a set with the intersection of itself and another. """
            pass
    
        def isdisjoint(self, *args, **kwargs): # real signature unknown
            """ Return True if two sets have a null intersection. """
            pass
    
        def issubset(self, *args, **kwargs): # real signature unknown
            """ 
            相当于s1<=s2
            
            Report whether another set contains this set. """
            pass
    
        def issuperset(self, *args, **kwargs): # real signature unknown
            """
            相当于s1>=s2
            
             Report whether this set contains another set. """
            pass
    
        def pop(self, *args, **kwargs): # real signature unknown
            """
            Remove and return an arbitrary set element.
            Raises KeyError if the set is empty.
            """
            pass
    
        def remove(self, *args, **kwargs): # real signature unknown
            """
            Remove an element from a set; it must be a member.
            
            If the element is not a member, raise a KeyError.
            """
            pass
    
        def symmetric_difference(self, *args, **kwargs): # real signature unknown
            """
            相当于s1^s2
            
            Return the symmetric difference of two sets as a new set.
            
            (i.e. all elements that are in exactly one of the sets.)
            """
            pass
    
        def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
            """ Update a set with the symmetric difference of itself and another. """
            pass
    
        def union(self, *args, **kwargs): # real signature unknown
            """
            相当于s1|s2
            
            Return the union of sets as a new set.
            
            (i.e. all elements that are in either set.)
            """
            pass
    
        def update(self, *args, **kwargs): # real signature unknown
            """ Update a set with the union of itself and others. """
            pass
    
        def __and__(self, *args, **kwargs): # real signature unknown
            """ Return self&value. """
            pass
    
        def __contains__(self, y): # real signature unknown; restored from __doc__
            """ x.__contains__(y) <==> y in x. """
            pass
    
        def __eq__(self, *args, **kwargs): # real signature unknown
            """ Return self==value. """
            pass
    
        def __getattribute__(self, *args, **kwargs): # real signature unknown
            """ Return getattr(self, name). """
            pass
    
        def __ge__(self, *args, **kwargs): # real signature unknown
            """ Return self>=value. """
            pass
    
        def __gt__(self, *args, **kwargs): # real signature unknown
            """ Return self>value. """
            pass
    
        def __iand__(self, *args, **kwargs): # real signature unknown
            """ Return self&=value. """
            pass
    
        def __init__(self, seq=()): # known special case of set.__init__
            """
            set() -> new empty set object
            set(iterable) -> new set object
            
            Build an unordered collection of unique elements.
            # (copied from class doc)
            """
            pass
    
        def __ior__(self, *args, **kwargs): # real signature unknown
            """ Return self|=value. """
            pass
    
        def __isub__(self, *args, **kwargs): # real signature unknown
            """ Return self-=value. """
            pass
    
        def __iter__(self, *args, **kwargs): # real signature unknown
            """ Implement iter(self). """
            pass
    
        def __ixor__(self, *args, **kwargs): # real signature unknown
            """ Return self^=value. """
            pass
    
        def __len__(self, *args, **kwargs): # real signature unknown
            """ Return len(self). """
            pass
    
        def __le__(self, *args, **kwargs): # real signature unknown
            """ Return self<=value. """
            pass
    
        def __lt__(self, *args, **kwargs): # real signature unknown
            """ Return self<value. """
            pass
    
        @staticmethod # known case of __new__
        def __new__(*args, **kwargs): # real signature unknown
            """ Create and return a new object.  See help(type) for accurate signature. """
            pass
    
        def __ne__(self, *args, **kwargs): # real signature unknown
            """ Return self!=value. """
            pass
    
        def __or__(self, *args, **kwargs): # real signature unknown
            """ Return self|value. """
            pass
    
        def __rand__(self, *args, **kwargs): # real signature unknown
            """ Return value&self. """
            pass
    
        def __reduce__(self, *args, **kwargs): # real signature unknown
            """ Return state information for pickling. """
            pass
    
        def __repr__(self, *args, **kwargs): # real signature unknown
            """ Return repr(self). """
            pass
    
        def __ror__(self, *args, **kwargs): # real signature unknown
            """ Return value|self. """
            pass
    
        def __rsub__(self, *args, **kwargs): # real signature unknown
            """ Return value-self. """
            pass
    
        def __rxor__(self, *args, **kwargs): # real signature unknown
            """ Return value^self. """
            pass
    
        def __sizeof__(self): # real signature unknown; restored from __doc__
            """ S.__sizeof__() -> size of S in memory, in bytes """
            pass
    
        def __sub__(self, *args, **kwargs): # real signature unknown
            """ Return self-value. """
            pass
    
        def __xor__(self, *args, **kwargs): # real signature unknown
            """ Return self^value. """
            pass
    
        __hash__ = None
    
    查看
    
    查看
    

    bytes类型

    定义:存8bit整数,数据基于网络传输或内存变量存储到硬盘时需要转成bytes类型,字符串前置b代表为bytes类型

    >>> x
    'hello sb'
    >>> x.encode('gb2312')
    b'hello sb'
    
    #!/usr/bin/python3
    
    student = {'Tom', 'Jim', 'Mary', 'Tom', 'Jack', 'Rose'}
    
    print(student)   # 输出集合,重复的元素被自动去掉
    
    # 成员测试
    if('Rose' in student) :
        print('Rose 在集合中')
    else :
    	print('Rose 不在集合中')
    
    
    # set可以进行集合运算
    a = set('abracadabra')
    b = set('alacazam')
    
    print(a)
    
    print(a - b)     # a和b的差集
    
    print(a | b)     # a和b的并集
    
    print(a & b)     # a和b的交集
    
    print(a ^ b)     # a和b中不同时存在的元素
    

     以上实例输出结果:

    {'Jack', 'Rose', 'Mary', 'Jim', 'Tom'}
    Rose 在集合中
    {'r', 'b', 'a', 'c', 'd'}
    {'r', 'b', 'd'}
    {'a', 'l', 'z', 'b', 'm', 'd', 'r', 'c'}
    {'a', 'c'}
    {'l', 'z', 'b', 'm', 'd', 'r'}
    

    set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

    要创建一个set,需要提供一个list作为输入集合:

    >>> s = set([1, 2, 3])
    >>> s
    {1, 2, 3}
    

    注意,传入的参数[1, 2, 3]是一个list,而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。

    重复元素在set中自动被过滤:

    >>> s = set([1, 1, 2, 2, 3, 3])
    >>> s
    {1, 2, 3}
    

    通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

    >>> s.add(4)
    >>> s
    {1, 2, 3, 4}
    >>> s.add(4)
    >>> s
    {1, 2, 3, 4}
    

    通过remove(key)方法可以删除元素:

    >>> s.remove(4)
    >>> s
    {1, 2, 3}
    

    set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

    >>> s1 = set([1, 2, 3])
    >>> s2 = set([2, 3, 4])
    >>> s1 & s2
    {2, 3}
    >>> s1 | s2
    {1, 2, 3, 4}
    

    set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。

    再议不可变对象

    上面我们讲了,str是不变对象,而list是可变对象。

    对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

    >>> a = ['c', 'b', 'a']
    >>> a.sort()
    >>> a
    ['a', 'b', 'c']
    

    而对于不可变对象,比如str,对str进行操作呢:

    >>> a = 'abc'
    >>> a.replace('a', 'A')
    'Abc'
    >>> a
    'abc'
    

    虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

    我们先把代码改成下面这样:

    >>> a = 'abc'
    >>> b = a.replace('a', 'A')
    >>> b
    'Abc'
    >>> a
    'abc'
    

    要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc'

    a-to-str

    当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

    a-b-to-2-strs

    所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。

    小结

    使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

    tuple虽然是不变对象,但试试把(1, 2, 3)(1, [2, 3])放入dict或set中,并解释结果。

    标准数据类型特性总结

    按存值个数区分

    标量/原子类型 数字,字符串
    容器类型 列表,元组,字典

    按可变不可变区分

    可变 列表,字典
    不可变 数字,字符串,元组

    按访问顺序区分

    直接访问 数字
    顺序访问(序列类型) 字符串,列表,元组
    key值访问(映射类型) 字典

      

    深浅拷贝

    一、数字和字符串

    对于 数字 和 字符串 而言,赋值、浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址。

    import copy
    # ######### 数字、字符串 #########
    n1 = 123
    # n1 = "i am alex age 10"
    print(id(n1))
    # ## 赋值 ##
    n2 = n1
    print(id(n2))
    # ## 浅拷贝 ##
    n2 = copy.copy(n1)
    print(id(n2))
      
    # ## 深拷贝 ##
    n3 = copy.deepcopy(n1)
    print(id(n3))
    

     其他基本数据类型

    对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。

    1、赋值

    赋值,只是创建一个变量,该变量指向原来内存地址,如:

    n1 = {"k1": "wu", "k2": 123, "k3": ["Tom", 456]}
      
    n2 = n1
    

    2、浅拷贝

    浅拷贝,在内存中只额外创建第一层数据

    import copy
      
    n1 = {"k1": "wu", "k2": 123, "k3": ["Tom", 456]}
      
    n3 = copy.copy(n1)
    

    3、深拷贝

    深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)

    import copy
      
    n1 = {"k1": "wu", "k2": 123, "k3": ["Tom", 456]}
      
    n4 = copy.deepcopy(n1)
    
    自己不努力,谁也给不了自己想要的生活
  • 相关阅读:
    HDU-1702-ACboy needs your help again!(Stack)
    HDU1276-士兵队列训练问题 (Queue)
    HDU1285-确定比赛名次(拓扑+优先队列)
    The Preliminary Contest for ICPC Asia Nanjing 2019
    拓扑排序板子 hihocoder-1174
    BZOJ1066 [SCOI2007]蜥蜴
    BZOJ3888 [Usaco2015 Jan]Stampede
    BZOJ1718 [Usaco2006 Jan] Redundant Paths 分离的路径
    BZOJ1112 [POI2008]砖块Klo
    BZOJ1031 [JSOI2007]字符加密Cipher
  • 原文地址:https://www.cnblogs.com/zhangyux/p/5991426.html
Copyright © 2011-2022 走看看