zoukankan      html  css  js  c++  java
  • 随机数生成方法

    转自:https://www.cnblogs.com/ECJTUACM-873284962/p/6926203.html

    1、蒙特卡洛方法

    蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,数学家冯·诺依曼用闻名世界的赌城——蒙特卡罗命名(就是那个冯·诺依曼)。 
    蒙特卡罗方法解题过程的主要步骤: 
    a.针对实际问题建立一个简单且便于实现的概率统计模型,使所求的量恰好是该模型的概率分布或数字特征。 
    b.对模型的随机变量建立抽样方法,在计算机上进行模拟测试,抽取足够多的随机数。 
    c.对模拟实验结果进行统计分析,给出所求解的“估计”。 
    d.必要时,改进模型以提高估计精度和减少实验费用,提高模拟效率。

    2、冯·诺依曼

    冯·诺依曼(John von Neumann,1903~1957),20世纪最重要的数学家之一,在现代计算机、博弈论和核武器等诸多领域内有杰出建树的最伟大的科学全才之一,被称为“计算机之父”和“博弈论之父”。主要贡献是:2进制思想与程序内存思想,当然还有蒙特卡洛方法。通过第一部分,可知,蒙特卡洛方法更多的是一种思想的体现(这点远不同于快排等“严格”类算法),下面介绍最常见的一种应用——随机数生成。

    3、U(0,1)随机数的产生

    对随机系统进行模拟,便需要产生服从某种分布的一系列随机数。最常用、最基础的随机数是在(0,1)区间内均匀分布的随机数,最常用的两类数值计算方法是:乘同余法和混合同余法。

    乘同余法:clip_image002其中,clip_image002[4]被称为种子,clip_image002[6]是模,clip_image002[8]是(0,1)区间的随机数。

    混合同余法:clip_image002[10]其中,clip_image002[12]是非负整数。

    这些随机数是具有周期性的,模拟参数的选择不同,产生的随机数质量也有所差异。更复杂的生成方法还有:

    clip_image002[14]

    4、从U(0,1)到其它概率分布的随机数

    离散型随机数的模拟

    设随机变量X的概率分布为:clip_image002[16],分布函数有clip_image002[18]

    设随机变量U~U(0,1)的均匀分布,则clip_image002[20]表明clip_image002[22]的概率与随机变量u落在clip_image002[24]clip_image002[26]之间的概率相同。

    例如:离散随机变量X有分布律

    X 0 1 2
    P(x) 0.3 0.3 0.4

    U是(0,1)的均匀分布,则有clip_image002[28],这样得到的x便具有X的分布律。

    连续型随机变量的模拟

    常用的有两种方法:逆变换法和舍选法。逆变换法 
    定理:设随机变量Y的分布函数为F(y)是连续函数,而U是(0,1)上均匀分布的随机变量。另clip_image002[30],则X和Y具有相同的分布。

    证明:由定义知,X的分布函数clip_image002[32] 
    所以X和Y具有相同的分布。 
    这样计算得clip_image002[40],带入均匀分布的U,即可得到服从clip_image002[38]的随机数Y。 
    例如:设X~U(a,b),则其分布函数为

    clip_image002[42]clip_image002[44]。所以生成U(0,1)的随机数U,则clip_image002[46]便是来自U(a,b)的随机数。

    有些随机变量的累计分布函数不存在或者难以求出,即使存在,但计算困难,于是提出了舍选法 
    要产生服从clip_image002[48]的随机数,设x的值域为[a,b],抽样过程如下:

    1.已知随机分布clip_image002[50]且x的取值区间也为[a,b],并要求clip_image002[54],如图: 
    clip_image002[56] 
    2.从clip_image002[50]中随机抽样得clip_image002[59],然后由clip_image002[62]的均匀分布抽样得clip_image002[65]。 
    3.接受或舍弃取样值clip_image002[59],如果clip_image002[67]舍弃该值;返回上一步,否则接受。几何解释如下: 
    image

    常数c的选取:c应该尽可能地小,因为抽样效率与c成反比;一般取clip_image002[69]。这里的clip_image002[50]可以取均匀分布,这样由第二步中两个均匀分布便能得到其他任意分布的模拟抽样。

    5、正态随机数的生成

    除了上面的反函数法和舍选法,正态随机数还可以根据中心极限定理和Box Muller(坐标变换法)得到。

    中心极限定理:如果随机变量序列 clip_image002[72]独立同分布,并且具有有限的数学期望和方差clip_image002[74],则对于一切clip_image002[76]

    clip_image002[80] 
    也就是说,当n个独立同分布的变量和,服从clip_image002[82]的正态分布(n足够大时)。

    设n个独立同分布的随机变量clip_image002[84],它们服从U(0,1)的均匀分布,那么clip_image002[86]渐近服从正态分布clip_image002[88]

    Box Muller方法,设(X,Y)是一对相互独立的服从正态分布clip_image002[88]的随机变量,则有概率密度函数: 
    clip_image002[90] 
    clip_image002[93],其中clip_image002[95],则clip_image002[97]有分布函数: 
    clip_image002[99] 
    clip_image002[101],则分布函数的反函数得:clip_image002[103]

    如果clip_image002[109]服从均匀分布U(0,1),则clip_image002[107]可由clip_image002[111]模拟生成(clip_image002[115]也为均匀分布,可被clip_image002[109]代替)。令clip_image002[118]clip_image002[120]clip_image002[122]服从均匀分布U(0,1)。得: 
    clip_image002[124] 
    X和Y均服从正态分布。用Box Muller方法来生成服从正态分布的随机数是十分快捷方便的。

    下面介绍几种简单的随机数的算法

    1 生成随机数
    一般c语言中提供了随机数生成函数,
    其一是伪随机数--rand:用于返回一个0-32767之间的伪随机数;
    其二是随机种子函数--srand:用来初始化随机数发生器的随机种子
    复制代码
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <time.h>
     4 
     5 int main()
     6 {
     7     int i,j;
     8     srand((int)time(0));
     9     for (int i = 0; i < 10; i++)
    10     {
    11         for (int j = 0; j < 10; j++)
    12         {
    13             printf("%d  ",rand());
    14         }
    15         printf("
    ");
    16     }
    17     return 0;
    18 }
    复制代码
    当然也可以生成一定范围内的随机数
    比如生成0——100之间的随机数
    复制代码
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <time.h>
     4 
     5 int main()
     6 {
     7     int i,j;
     8     srand((int)time(0));
     9     for (int i = 0; i < 10; i++)
    10     {
    11         for (int j = 0; j < 10; j++)
    12         {
    13             printf("%d  ",rand()*100/32767);
    14         }
    15         printf("
    ");
    16     }
    17     return 0;
    18 }
    复制代码

    也可以生成100——200之间的随机数

    复制代码
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <time.h>
     4 
     5 int main()
     6 {
     7     int i,j;
     8     srand((int)time(0));
     9     for (int i = 0; i < 10; i++)
    10     {
    11         for (int j = 0; j < 10; j++)
    12         {
    13             printf("%d  ",rand()/1000+100);
    14         }
    15         printf("
    ");
    16     }
    17     return 0;
    18 }
    复制代码

    使用rand()函数获取一定范围内的一个随机数

    如果想要获取在一定范围内的数的话,直接做相应的除法取余即可。

    复制代码
     1 #include<iostream>
     2 #include<ctime>
     3 using namespace std;
     4 int main()
     5 {
     6  srand(time(0));
     7  for(int i=0;i<10;i++)
     8  {
     9   //产生10以内的整数
    10   cout<<rand()%10<<endl;
    11  }
    12 }
    复制代码
    2 生成[0,1]之间均匀分布的随机数算法
     
     
     
    在这里采用一种方式生成随机数
    其中i=1,2,3.。。。
    而pi就是地推倒的第i个随机数
     
    根据经验,一般选取基数base=256.0,一般为2的整数倍;另外的两个常数选取a=17.0 和b=139.0
     
    需要注意
    (1)这里的取模运算是针对浮点型数据的,而c语言中的取模运算不能用于浮点数数据的操作,这样就需要用户自己编写取模的程序;
    (2)ri是随着递推而每次更新的。因此,如果将这个算法编写出函数,需要考虑参数是传值还是传地址;
     
    递推更新,所以在这里要传地址,否则得不到结果!
    复制代码
     1 #include <stdio.h>
     2 
     3 
     4 double rand0_1(double *r)
     5 {
     6     double base=256.0;
     7     double a=17.0;
     8     double b=139.0;
     9     double temp1=a*(*r)+b;
    10     //printf("%lf",temp1);
    11     double temp2=(int)(temp1/base); //得到余数
    12     double temp3=temp1-temp2*base;
    13     //printf("%lf
    ",temp2);
    14     //printf("%lf
    ",temp3);
    15     *r=temp3;
    16     double p=*r/base;
    17     return p;
    18 }
    19 
    20 int main()
    21 {
    22     double r=5.0;
    23     printf("output 10 number between 0 and 1:
    ");
    24     for (int i = 0; i < 10; i++)
    25     {
    26         printf("%10.5lf
    ",rand0_1(&r));
    27     }
    28     return 0;
    29 }
    复制代码
    3 产生任意范围内的随机数,比如产生[m,n]之间的随机数
    这个很容易,只要将之前的[0,1]之间的随机数这样处理就行了
    m+(m-n)*rand0_1(&r)就行了;
    复制代码
     1 #include <stdio.h>
     2 
     3 
     4 double rand0_1(double *r)
     5 {
     6     double base=256.0;
     7     double a=17.0;
     8     double b=139.0;
     9     double temp1=a*(*r)+b;
    10     //printf("%lf",temp1);
    11     double temp2=(int)(temp1/base); //得到余数
    12     double temp3=temp1-temp2*base;
    13     //printf("%lf
    ",temp2);
    14     //printf("%lf
    ",temp3);
    15     *r=temp3;
    16     double p=*r/base;
    17     return p;
    18 }
    19 
    20 int main()
    21 {
    22     double m=1.0,n=5.0;
    23     double r=5.0;
    24     printf("output 10 number between 0 and 1:
    ");
    25     for (int i = 0; i < 10; i++)
    26     {
    27         printf("%10.5lf
    ",m+(n-m)*rand0_1(&r));
    28     }
    29     return 0;
    30 }
    复制代码
    4 正态分布的随机数生成算法
     
    符合正太分布的随机数在研究中也很重要,下面给出一种生成正态分布数的方法

    其中Ri表示[0,1]之间均匀分布的随机数;
     

    u为均值,  为方差,当n趋向于无穷大的时候,得到随机的随机分布为正态分布;

    复制代码
     1 #include <stdio.h>
     2 #include <math.h>
     3 
     4 double rand0_1(double *r)
     5 {
     6       double base=256.0;
     7       double a=17.0;
     8       double b=139.0;
     9       double temp1=a*(*r)+b;
    10       //printf("%lf",temp1);
    11       double temp2=(int)(temp1/base); //得到余数
    12       double temp3=temp1-temp2*base;
    13       //printf("%lf
    ",temp2);
    14       //printf("%lf
    ",temp3);
    15       *r=temp3;
    16       double p=*r/base;
    17       return p;
    18 }
    19 
    20 double random_normality(double u,double t,double *r ,double n)
    21 {
    22       double total=0.0;
    23       double result;
    24       for (int i = 0; i < n; i++)
    25       {
    26             total+=rand0_1(r);
    27       }
    28       result=u+t*(total-n/2)/sqrt(n/12);
    29       return result;
    30 }
    31 
    32 int main()
    33 {
    34       double r=5.0;
    35       double u=2.0;
    36       double t=3.5;
    37       double n=12;
    38       printf("output 10 number between 0 and 1:
    ");
    39       for (int i = 0; i < 10; i++)
    40       {
    41             printf("%10.5lf
    ",random_normality(u,t,&r,n));
    42       }
    43       return 0;
    44 }
    复制代码

     补充知识点:leveldb中使用了一个简单的方式来实现随机化数;算法的核心是seed_ = (seed_ * A) % M,

    下面把源代码贴出来,不难,可以和上面的参考下

    复制代码
     1 private:
     2   uint32_t seed_;
     3  public:
     4   explicit Random(uint32_t s) : seed_(s & 0x7fffffffu) {
     5     // Avoid bad seeds.
     6     if (seed_ == 0 || seed_ == 2147483647L) {
     7       seed_ = 1;
     8     }
     9   }
    10   uint32_t Next() {
    11     static const uint32_t M = 2147483647L;   // 2^31-1
    12     static const uint64_t A = 16807;  // bits 14, 8, 7, 5, 2, 1, 0
    13     // We are computing
    14     //       seed_ = (seed_ * A) % M,    where M = 2^31-1
    15     //
    16     // seed_ must not be zero or M, or else all subsequent computed values
    17     // will be zero or M respectively.  For all other values, seed_ will end
    18     // up cycling through every number in [1,M-1]
    19     uint64_t product = seed_ * A;
    20 
    21     // Compute (product % M) using the fact that ((x << 31) % M) == x.
    22     seed_ = static_cast<uint32_t>((product >> 31) + (product & M));
    23     // The first reduction may overflow by 1 bit, so we may need to
    24     // repeat.  mod == M is not possible; using > allows the faster
    25     // sign-bit-based test.
    26     if (seed_ > M) {
    27       seed_ -= M;
    28     }
    29     return seed_;
    30   }
    31   // Returns a uniformly distributed value in the range [0..n-1]
    32   // REQUIRES: n > 0
    33   uint32_t Uniform(int n) { return Next() % n; }
    34 
    35   // Randomly returns true ~"1/n" of the time, and false otherwise.
    36   // REQUIRES: n > 0
    37   bool OneIn(int n) { return (Next() % n) == 0; }
    38 
    39   // Skewed: pick "base" uniformly from range [0,max_log] and then
    40   // return "base" random bits.  The effect is to pick a number in the
    41   // range [0,2^max_log-1] with exponential bias towards smaller numbers.
    42   uint32_t Skewed(int max_log) {
    43     return Uniform(1 << Uniform(max_log + 1));
    44   }
    45 };
    复制代码

    这里面也直接取模得到一定范围内的随机数,简单明了。

    总之,做个简单的总结

    C语言/C++怎样产生随机数:这里要用到的是rand()函数, srand()函数,和time()函数。

    需要说明的是,iostream头文件中就有srand函数的定义,不需要再额外引入stdlib.h;而使用time()函数需要引入ctime头文件。

    使用rand()函数获取一个随机数
    如果你只要产生随机数而不需要设定范围的话,你只要用rand()就可以了:rand()会返回一随机数值, 范围在0至RAND_MAX 间。RAND_MAX定义在stdlib.h, 其值为2147483647。

    使用rand函数和time函数
    我们上面已经可以获取随机数了,为什么还需要使用time函数呢?我们通过多次运行发现,该程序虽然生成了10个随机数,但是这个10个随机数是固定的,也就是说并不随着时间的变化而变化。

    这与srand()函数有关。srand()用来设置rand()产生随机数时的随机数种子。在调用rand()函数产生随机数前,必须先利用srand()设好随机数种子(seed), 如果未设随机数种子, rand()在调用时会自动设随机数种子为1。

    上面的例子就是因为没有设置随机数种子,每次随机数种子都自动设成相同值1 ,进而导致rand()所产生的随机数值都一样。

    srand()函数定义 : void srand (unsigned int seed);

    通常可以利用geypid()或time(0)的返回值来当做seed

    如果你用time(0)的话,要加入头文件#include<ctime>

    time(0)或者time(NULL)返回的是系统的时间(从1970.1.1午夜算起),单位:秒

  • 相关阅读:
    装饰器 无惨固定模式 和 有参装饰器的固定模式
    匿名函数
    字典生成式
    列表生成式
    Centos7安装配置apache-tomcat-8.5.16.tar.gz
    Centos7安装配置jdk-8u151-linux-x64.tar.gz
    Linux CentOS7源码安装配置mysql-5.7.17-linux-glibc2.5-x86_64.tar.gz
    VirtualBox新建Centos7虚拟系统
    vmware workstation 10的安装
    redhat linux rpm包安装配置mysql数据库
  • 原文地址:https://www.cnblogs.com/zhangzefei/p/9783658.html
Copyright © 2011-2022 走看看