zoukankan      html  css  js  c++  java
  • 华中师范大学2011年数学分析考研试题参考解答

    来源 [尊重原有作者劳动成果]

     

    一、

    (1)证明:由于${{x}_{1}}in (0,frac{pi }{2}),{{x}_{n+1}}=sin {{x}_{n}}$,则${{x}_{n}}in (0,frac{pi }{2}),n=1,2,cdots $

    且${{x}_{n+1}}=sin {{x}_{n}}le {{x}_{n}}$

    于是${{{x}_{n}}}$单调递减且${{x}_{n}}in (0,frac{pi }{2})$

    由单调有界原理可知:${{{x}_{n}}}$收敛

    不妨设$underset{n o +infty }{mathop{lim }}\,{{x}_{n}}=lin [0,frac{pi }{2}]$,由${{x}_{n+1}}=sin {{x}_{n}}$,两边取极限,得$l=sin l$

    解得$l=0$,即$underset{n o +infty }{mathop{lim }}\,{{x}_{n}}=0$

    (2)证明:由(1)知:$underset{n o +infty }{mathop{lim }}\,{{x}_{n}}=0$,则$underset{n o +infty }{mathop{lim }}\,frac{1}{x_{n}^{2}}=+infty $

    由$Stolz$公式可知:

    $underset{n o +infty }{mathop{lim }}\,n{{sin }^{2}}{{x}_{n}}=underset{n o +infty }{mathop{lim }}\,nx_{n+1}^{2}=underset{n o +infty }{mathop{lim }}\,frac{n}{frac{1}{x_{n+1}^{2}}}=underset{n o +infty }{mathop{lim }}\,frac{n-(n-1)}{frac{1}{x_{n+1}^{2}}-frac{1}{x_{n}^{2}}}=underset{n o +infty }{mathop{lim }}\,frac{1}{frac{1}{{{sin }^{2}}{{x}_{n}}}-frac{1}{x_{n}^{2}}}=underset{n o +infty }{mathop{lim }}\,frac{x_{n}^{2}{{sin }^{2}}{{x}_{n}}}{x_{n}^{2}-{{sin }^{2}}{{x}_{n}}}$

    $=underset{n o +infty }{mathop{lim }}\,frac{x_{n}^{4}+o(x_{n}^{4})}{x_{n}^{2}-{{[{{x}_{n}}-frac{x_{n}^{3}}{3!}+o(x_{n}^{3})]}^{2}}}=underset{n o +infty }{mathop{lim }}\,frac{x_{n}^{4}+o(x_{n}^{4})}{frac{x_{n}^{4}}{3}+o(x_{n}^{4})}=3$

    (3)证明:由(2)知:

    $underset{n o +infty }{mathop{lim }}\,frac{x_{n+1}^{2}}{frac{1}{n}}=3$

    于是

    $underset{n o +infty }{mathop{lim }}\,frac{x_{n+1}^{p}}{{{(frac{1}{n})}^{frac{p}{2}}}}=underset{n o +infty }{mathop{lim }}\,{{(frac{x_{n+1}^{2}}{frac{1}{n}})}^{frac{p}{2}}}={{3}^{frac{p}{2}}}$

    则$sumlimits_{n=1}^{+infty }{x_{n+1}^{p}}$与$sumlimits_{n=1}^{+infty }{(frac{1}{n}}{{)}^{frac{p}{2}}}$收敛性相同

    而$p2$时,$sumlimits_{n=1}^{+infty }{(frac{1}{n}}{{)}^{frac{p}{2}}}$收敛;$ple 2$时,$sumlimits_{n=1}^{+infty }{(frac{1}{n}}{{)}^{frac{p}{2}}}$发散

    于是$p2$时,[sumlimits_{n=1}^{+infty }{x_{n+1}^{p}}]收敛;

    $ple 2$时,[sumlimits_{n=1}^{+infty }{x_{n+1}^{p}}]发散

    二、

    (1)证明:由于${{{b}_{n}}}$有界,则存在$M0$,对一切$nin {{N}^{ ext{*}}}$,有$left| {{b}_{n}} ight|M$

    由$alpha {{a}_{n+1}}+eta {{a}_{n}}={{b}_{n}}$

    1:若$alpha =0 e eta $,此时${{b}_{n}}=eta {{a}_{n}}$,则$underset{n o +infty }{mathop{lim }}\,{{b}_{n}}$存在$Leftrightarrow underset{n o +infty }{mathop{lim }}\,{{a}_{n}}$存在

    2:若$alpha e 0$,则${{a}_{n+1}}=frac{1}{alpha }{{b}_{n}}-frac{eta }{alpha }{{a}_{n}}$

    令$r=frac{eta }{alpha } e 1$,则

    ${{a}_{n}}=frac{1}{alpha }{{b}_{n-1}}-r{{a}_{n-1}}=frac{1}{alpha }{{b}_{n-1}}-r(frac{1}{alpha }{{b}_{n-2}}-r{{a}_{n-2}})=frac{1}{alpha }{{b}_{n-1}}-frac{r}{alpha }{{b}_{n-2}}+{{r}^{2}}{{a}_{n-2}}$

    $=cdots =frac{1}{alpha }[{{b}_{n-1}}-r{{b}_{n-2}}+cdots +{{(-r)}^{n-2}}]+{{a}_{1}}cdot {{(-r)}^{n-1}}$

    若$r=-1$,此时${{a}_{n}}=frac{1}{alpha }({{b}_{n-1}}+{{b}_{n-2}}+cdots +{{b}_{1}})+{{a}_{1}}$不一定恒有界(如${{b}_{n}}=frac{1}{n}$)

    若$left| r ight|1$,由$underset{n o +infty }{mathop{lim }}\,{{left| r ight|}^{n-2}}=+infty $,则${{{a}_{n}}}$无界

    从而$left| r ight|=left| frac{eta }{alpha } ight|1$,才使得${{{a}_{n}}}$恒有界

    于是$left| alpha +eta ight|ge left| alpha ight|-left| eta ight|0Rightarrow alpha +eta e 0$

    必要性:先给出法一,是种非常复杂的方法,但是比较实用

    法一:

    若${{{b}_{n}}}$收敛,不妨设$underset{n o +infty }{mathop{lim }}\,{{b}_{n}}=b$,进一步设${{b}_{n}}=b+{{varepsilon }_{n}}$,其中$underset{n o +infty }{mathop{lim }}\,{{varepsilon }_{n}}=0$

    于是

    ${{a}_{n+1}}=frac{1}{alpha }{{b}_{n}}-r{{a}_{n}}=frac{b+{{varepsilon }_{n}}}{alpha }-r{{a}_{n}}$

    ${{a}_{n+2}}=frac{1}{alpha }{{b}_{n+1}}-r{{a}_{n+1}}=frac{b+{{varepsilon }_{n+1}}}{alpha }-r{{a}_{n+1}}=frac{b+{{varepsilon }_{n+1}}}{alpha }-r(frac{b+{{varepsilon }_{n}}}{alpha }-r{{a}_{n}})=frac{b(1-r)}{alpha }+frac{{{varepsilon }_{n+1}}-r{{varepsilon }_{n}}}{alpha }+{{r}^{2}}{{a}_{n}}$

    $vdots $

    ${{a}_{n+k}}=frac{b}{alpha }[1-r+{{r}^{2}}+cdots +{{(-r)}^{k-1}}]+frac{{{varepsilon }_{n+k-1}}-r{{varepsilon }_{n+k-2}}+cdots +{{(-1)}^{k-1}}{{varepsilon }_{n}}}{alpha }+{{(-1)}^{k}}{{a}_{n}}$

    由于

    $frac{b}{alpha }[1-r+{{r}^{2}}+cdots +{{(-r)}^{k-1}}]=frac{b}{alpha }cdot frac{1-{{(-r)}^{k}}}{1+r}=frac{b}{alpha +eta }[1-{{(-r)}^{k}}]$

    另一方面,由$underset{n o +infty }{mathop{lim }}\,{{varepsilon }_{n}}=0$,则对任意的$varepsilon 0$,存在${{N}_{1}}0$,当$n{{N}_{1}}$时,$left| {{varepsilon }_{n}} ight|frac{(1-left| r ight|)varepsilon }{2}$

    于是$left| {{a}_{n+k}}-frac{b}{alpha +eta } ight|le left| frac{left| b ight|}{alpha +eta }+left| {{a}_{n}} ight| ight|cdot {{left| r ight|}^{k}}+frac{(1-left| r ight|)varepsilon }{2}cdot frac{1-{{left| r ight|}^{k}}}{1-left| r ight|}$

    而$underset{k o +infty }{mathop{lim }}\,{{left| r ight|}^{k}}=0$,则对上述$varepsilon 0$,存在${{N}_{2}}0$,当$n{{N}_{2}}$时,有

    $left| frac{left| b ight|}{alpha +eta }+left| {{a}_{n}} ight| ight|cdot {{left| r ight|}^{k}}frac{varepsilon }{2}$,$frac{(1-left| r ight|)varepsilon }{2}cdot frac{1-{{left| r ight|}^{k}}}{1-left| r ight|}$

    令$N=max {{{N}_{1}},{{N}_{2}}}$,当$nN$时,有$left| {{a}_{n}}-frac{b}{alpha +eta } ight|varepsilon $

    即$underset{n o +infty }{mathop{lim }}\,{{a}_{n}}=frac{b}{alpha +eta }$

    法二:

    首先以下三个命题成立:

    $underset{n o +infty }{mathop{lim }}\,({{u}_{n}}+{{v}_{n}})=underset{n o +infty }{mathop{lim }}\,{{u}_{n}}+underset{n o +infty }{mathop{lim }}\,{{v}_{n}},underset{n o +infty }{mathop{underline{lim }}}\,({{u}_{n}}+{{v}_{n}})=underset{n o +infty }{mathop{underline{lim }}}\,{{u}_{n}}+underset{n o +infty }{mathop{underline{lim }}}\,{{v}_{n}},underset{n o +infty }{mathop{underline{lim }}}\,{{u}_{n}}=-overline{underset{n o +infty }{mathop{lim }}\,}{{u}_{n}}$

    不妨设[overline{underset{n o infty }{mathop{lim }}\,}{{a}_{n}}={{a}_{1}},underset{n o +infty }{mathop{underline{lim }}}\,{{a}_{n}}={{a}_{2}},underset{n o +infty }{mathop{lim }}\,{{b}_{n}}=b]

    由于${{{a}_{n}}},{{{b}_{n}}}$都是有界数列

    则${{a}_{1}},{{a}_{2}},b$都是有限值,且${{b}_{n}}=alpha {{a}_{n+1}}+eta {{a}_{n}}$可知:

    取上极限得:$alpha {{a}_{1}}=b+eta {{a}_{2}}$

    取下极限得:$eta {{a}_{1}}=b+alpha {{a}_{2}}$

    由$alpha e eta $可知:${{a}_{1}}={{a}_{2}}$,即${{{a}_{n}}}$存在

    充分性:

    若${{{a}_{n}}}$收敛,则${{{a}_{n+1}}}$也收敛,于是${{{b}_{n}}}$收敛

    法二:首先以下三个命题成立:

    $underset{n o +infty }{mathop{lim }}\,({{u}_{n}}+{{v}_{n}})=underset{n o +infty }{mathop{lim }}\,{{u}_{n}}+underset{n o +infty }{mathop{lim }}\,{{v}_{n}},underset{n o +infty }{mathop{underline{lim }}}\,({{u}_{n}}+{{v}_{n}})=underset{n o +infty }{mathop{underline{lim }}}\,{{u}_{n}}+underset{n o +infty }{mathop{underline{lim }}}\,{{v}_{n}},underset{n o +infty }{mathop{underline{lim }}}\,{{u}_{n}}=-overline{underset{n o +infty }{mathop{lim }}\,}{{u}_{n}}$

    不妨设[overline{underset{n o infty }{mathop{lim }}\,}{{a}_{n}}={{a}_{1}},underset{n o +infty }{mathop{underline{lim }}}\,{{a}_{n}}={{a}_{2}},underset{n o +infty }{mathop{lim }}\,{{b}_{n}}=b]

    由于${{{a}_{n}}},{{{b}_{n}}}$都是有界数列

    则${{a}_{1}},{{a}_{2}},b$都是有限值,且${{b}_{n}}=alpha {{a}_{n+1}}+eta {{a}_{n}}$可知:

    取上极限得:$alpha {{a}_{1}}=b+eta {{a}_{2}}$

    取下极限得:$eta {{a}_{1}}=b+alpha {{a}_{2}}$

    由$alpha e eta $可知:${{a}_{1}}={{a}_{2}}$,即${{{a}_{n}}}$存在

    (2)若$alpha =eta $,则必要性不成立,充分性成立

    只需取${{a}_{n}}={{(-frac{eta }{alpha })}^{n}}={{(-1)}^{n}}$,此时${{{a}_{n}}}$不收敛,但

    ${{b}_{n}}=alpha {{a}_{n+1}}+eta {{a}_{n}}=0$收敛

    三、

    (1)解:不存在,理由如下:

    反证法:不妨设存在满足条件的$f(x)$

    由$f(x)0$且$f(x)=f(f(x))0$,则$f(x)$严格单调递增

    且$f(x)=f(f(x))f(0)$

    令$a1$,则

    $int_{-a}^{0}{f(x)dx=f(0)-f(-a)f(0)[0-(-a)]=af(0)}$

    于是$f(-a)f(0)-af(0)=(1-a)f(0)0$与$f(x)0$矛盾

    于是不存在满足条件的$f(x)$

    (2)只有零解,同样利用反证法

    若$f(x)$有零点但不恒为$0$(没有零点则回归到(1))

    记${{x}_{0}}=sup {xin R|f(x)=0}$

    由$f(x)$有零点(集合非空)但不恒为$0$且单调不减(集合有上界)

    则$f(x)=0,forall xin (-infty ,{{x}_{0}})$,由上确界的定义以及$f(x)$的连续性可知:

    $f({{x}_{0}})=0,f(x)0,xin ({{x}_{0}},+infty )$

    于是$f(x)=0,xin (-infty ,{{x}_{0}})$,下证${{x}_{0}}=0$

    若不然,不妨设${{x}_{0}}0=f({{x}_{0}})$,由局部有界性可知:存在${{delta }_{0}}0$,

    $forall xin ({{x}_{0}},{{x}_{0}}+{{delta }_{0}}),f(x){{x}_{0}},f(x)=f(f(x))=0$

    于是$f(x)=0,forall xin (-infty ,{{x}_{0}}+{{delta }_{0}})$矛盾

    同理可证${{x}_{0}}0$的情况也不成立

    于是${{x}_{0}}=0$

    于是$f(x)0,xin (0,+infty )$,则$f(x)=f(f(x))0,xin (0,+infty )$

    由微分中值定理可知,

    $f(x)=f(f(x))=f(f(x))-f(0)=f(eta )(f(x)-0)f(x)f(x),eta in (0,x)$

    于是$f(x)1,xin (0,+infty )$,且$f(x)$在$x=0$右连续

    于是$f(0)ge 1$与$f(0)=0$矛盾

    于是满足条件的$f(x)equiv 0,xin R$

    四、解:

    (1)不满足,考虑到不存在区域$D:left| x ight|le ,left| y ight|le b$,使得${{F}_{x}}$在$D$上连续且${{F}_{y}}(0,0)=0$

    于是$F(x,y)$在$(0,0)$附近不满足$F(x,y)=0$的隐函数存在定理条件

    从而$F(x,y)$在$(0,0)$附近不满足$F(x,y)=0$

    (2)存在,由于$y$严格单调升,$sin (left| x ight|y)$在$(0,0)$附近关于$y$严格单调升,故在$(0,0)$附近关于$y$严格单调升。

    而$F(x,y)$在$(0,0)$附近区域$D:left| x ight|le a,left| y ight|le b, $上连续。

    固定$x=0$因$F(0,y) $在$ [-y,y] $上是的严格单调增函数,且$F(0,0)=0$

    由函数的连续性知有$F(0,-b)0,F(0,b)0. $

    考虑一元连续函数$F(x,-b) $

    由于$F(0,-b)0, $所以存在${{eta }_{1}}0$,使得$F(x,-b)0,xin U(0,{{eta }_{1}})$

    明显也存在${{eta }_{2}}0, $使得$F(x,b)0,xin U(0,{{eta }_{2}})$

    令$eta =min ({{eta }_{1}},{{eta }_{2}}),$则对$forall xin U(0,eta ) $有$F(x,-b)0,F(x,b)0$

    设$ar{x}$为$U(0,eta ) $中任一点,则 $F(ar{x},-b)cdot F(ar{x},b)0$

    又由于作为$y$的函数$F(ar{x},y) $严格增加

    故必存在唯一的点$ar{y}in (-b,b) $使得$F(ar{x},ar{y})=0$。

    由$ar{x}$的任意性就确定了唯一的隐函数$y=f(x) $,显然$0=f(0) $。

    再设${{x}_{1}}$是$U(0,eta ) $的任意一点,记 ${{y}_{1}}=f({{x}_{1}}),$

    对$forall varepsilon 0$作两根平行线$y={{y}_{1}}+varepsilon ,y={{y}_{1}}-varepsilon $

    类似上面的证明知 存在$U({{x}_{1}},delta ) $使得对$forall xin ({{x}_{1}},delta ) $有$F(x,{{y}_{1}}+varepsilon )0,F(x,{{y}_{1}}-varepsilon )0. $由于作为$y$的连续函数$F(x,y) $的严格增加性,在$ ({{y}_{1}}-varepsilon ,{{y}_{1}}+varepsilon ) $上存在唯一的一个实点$y_{{}}^{{}}$使得$F(x,y)=0$,这说明对于$forall xin ({{x}_{1}},delta ) $有$left| f(x)-f({{x}_{1}}) ight|varepsilon . $故$y=f(x) $在$U(0,eta ) $内连续。

    显然,$F(x,0)=0$于是由$F(x,y)=0$在$(0,0)$附近确定隐函数$y=f(x) $的唯一性知$y=f(x)equiv 0$ ,其导函数${y}equiv 0$

    五、

    (1)解:由于$left| frac{{{x}^{3}}-{{y}^{3}}}{{{x}^{2}}+{{y}^{2}}} ight|le left| frac{{{x}^{3}}}{{{x}^{2}}+{{y}^{2}}} ight|+left| frac{{{y}^{3}}}{{{x}^{2}}+{{y}^{2}}} ight|le frac{1}{2}({{x}^{2}}+{{y}^{2}})$

    而$underset{(x,y) o (0,0)}{mathop{lim }}\,frac{1}{2}({{x}^{2}}+{{y}^{2}})=0$可知,$underset{(x,y) o (0,0)}{mathop{lim }}\,f(x,y)=underset{(x,y) o (0,0)}{mathop{lim }}\,frac{{{x}^{3}}-{{y}^{3}}}{{{x}^{2}}+{{y}^{2}}}=0=f(0,0) $

    从而$f(x,y)$在$(0,0)$处连续

    (2)解:当$(x,y) e (0,0)$时,由于

    ${{f}_{x}}(0,0)=underset{Delta x o 0}{mathop{lim }}\,frac{f(Delta x,0)-f(0,0)}{Delta x}=1,{{f}_{y}}(0,0)=underset{Delta y o 0}{mathop{lim }}\,frac{f(0,Delta y)-f(0,0)}{Delta y}=-1$

    可知$f(x,y)$的偏导数${{f}_{x}}(x,y),{{f}_{y}}(x,y)$在$(0,0)$存在

    (3)解:考虑到

    $underset{ ho o 0}{mathop{lim }}\,frac{f(Delta x,Delta y)-f(0,0)-{{f}_{x}}(0,0)Delta x-{{f}_{y}}(0,0)Delta y}{ ho }=underset{ ho o 0}{mathop{lim }}\,frac{frac{{{(Delta x)}^{3}}-{{(Delta y)}^{3}}}{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}-Delta x+Delta y}{sqrt{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}}$

    令$Delta y=kDelta x$,于是

    $underset{Delta x o 0}{mathop{lim }}\,frac{frac{{{(Delta x)}^{3}}-{{k}^{3}}{{(Delta x)}^{3}}}{(1+{{k}^{2}}){{(Delta x)}^{2}}}-Delta x+kDelta x}{sqrt{1+{{k}^{2}}}Delta x}=frac{(1-{{k}^{3}})+(k-1)(1+{{k}^{2}})}{{{(1+{{k}^{2}})}^{frac{3}{2}}}}=frac{k-{{k}^{2}}}{{{(1+{{k}^{2}})}^{frac{3}{2}}}}$与$k$有关

    从而$f(x,y)$在$(0,0)$不可微

    六、

    (1)证明:当${{x}_{n}}=1+frac{1}{n}$时,此时考虑$sumlimits_{n=1}^{+infty }{frac{ln (n+2)}{{{n}^{1+frac{1}{n}}}}}$

    由$underset{n o +infty }{mathop{lim }}\,frac{frac{ln (n+2)}{{{n}^{1+frac{1}{n}}}}}{frac{1}{n}}=+infty $且$sumlimits_{n=1}^{+infty }{frac{1}{n}}$发散

    从而$sumlimits_{n=1}^{+infty }{frac{ln (1+nx ext{)}}{{{n}^{x}}}}$在$(1,+infty )$上不一致收敛

    (2)证明:由于$underset{n o +infty }{mathop{lim }}\,frac{frac{ln [1+(n+1)x]}{{{(n+1)}^{x}}}}{frac{ln (1+nx ext{)}}{{{n}^{x}}}}=underset{n o +infty }{mathop{lim }}\,$

    七、

    (1)证明:由积分第二中值定理可知:

    $left| int_{0}^{a}{f(x)sin nxdx} ight|=left| f(0)int_{0}^{b}{sin nxdx+f(a)int_{b}^{a}{sin nxdx}} ight|=left| f(0)frac{1-cosnb}{n}+f(a)frac{cos nb-cos na}{n} ight|$$le frac{2left| f(0) ight|+left| f(a) ight|}{n}$

    而$underset{n o +infty }{mathop{lim }}\,frac{2left| f(0) ight|+left| f(a) ight|}{n}=0$可知$underset{n o +infty }{mathop{lim }}\,int_{0}^{a}{f(x)sin nxdx}=0$

    (2)不妨设$f(x)$在$[0,+infty )$上单调递增,由

    $int_{0}^{+infty }{f(x)sin nxdx=}int_{0}^{2pi }{f(x)sin nxdx+int_{2pi }^{3pi }{f(x)sin nxdx+int_{3pi }^{4pi }{f(x)sin nxdx+}cdots }}$

    $ge int_{0}^{2pi }{f(x)sin nxdx+}f(2pi )int_{2pi }^{3pi }{sin nxdx}+f(3pi )int_{3pi }^{4pi }{sin nxdx+cdots }$

    $=int_{0}^{2pi }{f(x)sin nxdx}$

    $int_{0}^{+infty }{f(x)sin nxdx=}int_{0}^{pi }{f(x)sin nxdx+int_{pi }^{2pi }{f(x)sin nxdx+int_{2pi }^{3pi }{f(x)sin nxdx+}cdots }}$

    $le int_{0}^{pi }{f(x)sin nxdx+}f(2pi )int_{pi }^{2pi }{sin nxdx}+f(3pi )int_{2pi }^{3pi }{sin nxdx+cdots }$

    $=int_{0}^{pi }{f(x)sin nxdx}$

    于是$int_{0}^{2pi }{f(x)sin nxdxle }int_{0}^{+infty }{f(x)sin nxdxle }int_{0}^{pi }{f(x)sin nxdx}$

    两边取极限,由夹逼原理及(1)知$underset{n o +infty }{mathop{lim }}\,int_{0}^{+infty }{f(x)sin nxdx=0}$

    八、证明:$uin {{C}^{2}}(overline{Omega })$及$u$为非常值函数知$iintlimits_{Omega }{left[ {{left( frac{partial u}{partial x} ight)}^{2}}+{{left( frac{partial u}{partial y} ight)}^{2}} ight]}dxdy0$,令

    $P=-ufrac{partial u}{partial y},Q=ufrac{partial u}{partial x},$则因$uin {{C}^{2}}(overline{Omega }),$利用格林公式

    $iintlimits_{Omega }{left( frac{partial Q}{partial x}-frac{partial P}{partial y} ight)dxdy=iintlimits_{Omega }{left[ {{left( frac{partial u}{partial x} ight)}^{2}}+{{left( frac{partial u}{partial y} ight)}^{2}}+uleft( frac{{{partial }^{2}}u}{partial {{x}^{2}}}+frac{{{partial }^{2}}u}{partial {{y}^{2}}} ight) ight]}dxdy=ointlimits_{partial Omega }{left( -ufrac{partial u}{partial y} ight)dx+ufrac{partial u}{partial x}dy}}$

    因$uleft| _{partial Omega }=0, herefore ointlimits_{partial Omega }{left( -ufrac{partial u}{partial y} ight)dx+ufrac{partial u}{partial x}dy=0} ight. $

    于是$iintlimits_{Omega }{uleft( frac{{{partial }^{2}}u}{partial {{x}^{2}}}+frac{{{partial }^{2}}u}{partial {{y}^{2}}} ight)dxdy=-iintlimits_{Omega }{left[ {{left( frac{partial u}{partial x} ight)}^{2}}+{{left( frac{partial u}{partial y} ight)}^{2}} ight]}dxdy}0$

  • 相关阅读:
    常见的无损压缩算法
    多媒体基本概念
    电子商务
    Java正则表达式
    Java 注解
    java泛型
    Java的反射机制
    Java 动态代理
    函数调用约定_stdcall[转]
    要研究的东东啊
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4054208.html
Copyright © 2011-2022 走看看