zoukankan      html  css  js  c++  java
  • 武汉大学2014年基础数学复试试题参考解答

    来源 [尊重原有作者劳动成果]

     

    2014年武汉大学基础数学复试试题解答

    时间:2014年3月22日8:30—10:30

    专业:基础数学

     

    一、(10分)已知函数$f(x)$在$(-1,1)$上连续,在除$x=0$上存在导函数

    (1)若$underset{x o 0}{mathop{lim }}\,f(x)$存在,证明存在;

    (2)若$underset{x o 0}{mathop{lim }}\,f(x)$不存在,则$f(0)$一定不存在吗?若不存在,说明理由;若存在,请给出反例并证明。

    证明:

    (1)由于$f(0)=underset{x o 0}{mathop{lim }}\,frac{f(x)-f(0)}{x-0}=underset{x o 0}{mathop{lim }}\,frac{f(x)-f(0)}{x}$

    而$f(x)$在$(-1,0)cup (0,1)$上可导

    由微分中值定理可知:

    存在$xi $在$0$和$x$之间,使得$f(x)-f(0)=f(xi )x$

    于是[f(0)=underset{x o 0}{mathop{lim }}\,f(xi )]存在

    于是$f(0)$存在

    (2)不一定

    例如

    $f(x)=left{egin{array}{ll} {x^2}sin frac{1}{x}, hbox{$x e 0$;} \ 0, hbox{$x = 0$.} end{array} ight.$

    显然$f(x)$在$(-1,1)$上连续,且$x e 0$时,$f(x)=2xsin frac{1}{x}-cos frac{1}{x}$

    则$underset{x o 0}{mathop{lim }}\,f(x)$不存在

    但$f(x)=underset{x o 0}{mathop{lim }}\,frac{f(x)-f(0)}{x-0}=underset{x o 0}{mathop{lim }}\,xsin frac{1}{x}=0$存在

    于是不一定不存在

    二、(10分)证明:函数$f(x)$在$(a,b)$上一致连续的充要条件是:对任意的${{{x}_{n}}}subset (a,b)$,只要${{{x}_{n}}}$收敛,则$f({{x}_{n}})$收敛。

    证明:

    必要性:若函数$f(x)$在$(a,b)$上一致连续

    则对任意的$varepsilon 0$,存在$delta (varepsilon )0$,对任意的$x,xsubset (a,b)$,只要$left| x-x ight|delta $,则

    $left| f(x)-f(x) ight|varepsilon $

    于是当${{{x}_{n}}}$收敛时,则对任意的$varepsilon 0$,存在$delta (varepsilon )0$,对任意的$x_{n}^{},x_{n}^{}subset (a,b)$,有

    $left| x_{n}^{}-x_{n}^{} ight|delta $

    于是$left| f(x_{n}^{})-f(x_{n}^{}) ight|varepsilon $

    由$Cauchy$收敛准则知,$f({{x}_{n}})$收敛

    充分性:对任意的${{{x}_{n}}}subset (a,b)$,只要${{{x}_{n}}}$一致收敛,则$f({{x}_{n}})$收敛

    即则对任意的$varepsilon 0$,存在$delta (varepsilon )0$,对任意的$x_{n}^{},x_{n}^{}subset (a,b)$,只要$left| x_{n}^{}-x_{n}^{} ight|delta $,于是

    $left| f(x_{n}^{})-f(x_{n}^{}) ight|varepsilon $

    下证$f(x)$在$(a,b)$上一致收敛

    反证:若$f(x)$在$(a,b)$上不一致收敛

    则存在${{varepsilon }_{0}}0$,对任意的$delta 0$,存在$left| x-x ight|delta $时,但有$left| f(x)-f(x) ight|ge {{varepsilon }_{0}}$

    取${{delta }_{1}}=1$,存在$x_{1}^{},x_{1}^{}in (a,b),left| x_{1}^{}-x_{1}^{} ight|1$,但$left| f(x_{1}^{})-f(x_{1}^{}) ight|ge {{varepsilon }_{0}}$

    取${{delta }_{2}}=frac{1}{2}$,存在$x_{2}^{},x_{2}^{}in (a,b),left| x_{2}^{}-x_{2}^{} ight|frac{1}{2}$,但$left| f(x_{2}^{})-f(x_{2}^{}) ight|ge {{varepsilon }_{0}}$

    $cdots cdots $

    取${{delta }_{n}}=frac{1}{n}$,存在$x_{n}^{},x_{n}^{}in (a,b),left| x_{n}^{}-x_{n}^{} ight|frac{1}{n}$,但$left| f(x_{n}^{})-f(x_{n}^{}) ight|ge {{varepsilon }_{0}}$

    于是存在${{{x}_{n}}}$收敛,但${f({{x}_{n}})}$发散,矛盾

    于是$f(x)$在$(a,b)$上一致收敛

    三、(10分)设$X$是度量空间,$E$为$X$中的紧子集,$varphi $是$E$上到自身的映射,

    $d(varphi (x),varphi (y))d(x,y)(x,yin E,x e y)$ ,求证:$varphi $在$E$中存在唯一不动点

    证明:定义$E$上的函数$f(x)=d(varphi x,x)$

    由于$left| f(x)-f(y) ight|=left| d(varphi x,x)-d(varphi y,y) ight|le d(varphi x,varphi y)+d(x,y)2d(x,y)$

    于是$f$是$E$上的连续映射

    由于$E$是度量空间$X$的紧子集

    则必有${{x}_{0}}in E$,使得$f({{x}_{0}})=underset{xin E}{mathop{min }}\,f(x)$

    先证$f({{x}_{0}})=0$

    反证:若$f({{x}_{0}}) e 0Rightarrow varphi {{x}_{0}} e {{x}_{0}}$

    记${{x}_{1}}=varphi {{x}_{0}}$,则$varphi {{x}_{1}}={{varphi }^{2}}{{x}_{0}}$

    于是

    $f({{x}_{1}})=d(varphi {{x}_{1}},{{x}_{1}})=d({{varphi }^{2}}{{x}_{0}},varphi {{x}_{0}})d(varphi {{x}_{0}},{{x}_{0}})=f({{x}_{0}})$

    这与$f({{x}_{0}})$是$f$的最小值矛盾

    于是$d(varphi {{x}_{0}},{{x}_{0}})=0$

    即$varphi {{x}_{0}}={{x}_{0}}$

    唯一性:设${{x}_{2}}$是$varphi $的另一个不动点,则$d({{x}_{0}},{{x}_{1}})=d(varphi {{x}_{0}},varphi {{x}_{1}})d({{x}_{0}},{{x}_{1}})$矛盾

    于是$varphi $在$E$中存在唯一不动点

    四、(10分)证明积分$int_{0}^{ ext{+}infty }{frac{sin xy}{x(1+y)}}dy$在$0delta le x+infty $上一致收敛,但在$0x+infty $上不一致收敛

    证明:对任意的$delta 0$,当$xin [delta ,+infty )$时,有$left| int_{0}^{A}{sin xydy} ight|=left| frac{1-cos Ax}{x} ight|le frac{2}{delta }$

    而$frac{1}{x(1+y)}$关于$y$单调递减且一致收敛于$0$

    由$Dirichlet$判别法可知:$int_{0}^{ ext{+}infty }{frac{sin xy}{x(1+y)}}dy$在$0delta le x+infty $上一致收敛

    另一方面:

    取$A_{n}^{}=n(2npi +frac{pi }{4}),A_{n}^{}=n(2npi +frac{pi }{2}),{{x}_{n}}=frac{1}{n}$,则

    $int_{A_{n}^{}}^{A_{n}^{}}{frac{sin {{x}_{n}}y}{{{x}_{n}}(1+y)}}dy=int_{n(2npi +frac{pi }{4})}^{n(2npi +frac{pi }{2})}{frac{nsin frac{y}{n}}{1+y}}dy$

    $ge int_{n(2npi +frac{pi }{4})}^{n(2npi +frac{pi }{2})}{frac{sqrt{2}n}{2(1+y)}}dy$

    $=frac{sqrt{2}}{2}nln [1+frac{npi }{4+n(8npi +pi )}]$

    .而$underset{n o +infty }{mathop{lim }}\,frac{sqrt{2}}{2}nln [1+frac{npi }{4+n(8npi +pi )}]=underset{n o +infty }{mathop{lim }}\,frac{sqrt{2}{{n}^{2}}pi }{8+2n(8npi +pi )}=frac{sqrt{2}}{16}0$

    则$int_{A_{n}^{}}^{A_{n}^{}}{frac{sin {{x}_{n}}y}{{{x}_{n}}(1+y)}}dyge frac{sqrt{2}}{16}$

    故$int_{0}^{ ext{+}infty }{frac{sin xy}{x(1+y)}}dy$在$(0,+infty )$上不一致收敛

    五、(10分)设$f(x)=sumlimits_{n=0}^{+infty }{{{a}_{n}}{{x}^{n}}}(-1x1)$,其中

    $underset{n o +infty }{mathop{lim }}\,n{{a}_{n}}=0$

    $underset{x o {{1}^{-}}}{mathop{lim }}\,f(x)=s$.

    求证:$sumlimits_{n=0}^{+infty }{{{a}_{n}}}$一致收敛且和为$s$

    证明:令${{delta }_{n}}=frac{sumlimits_{k=1}^{n}{left| k{{a}_{k}} ight|}}{n}$,下证

    $underset{n o +infty }{mathop{lim }}\,{{delta }_{n}}=0$

    由于$underset{n o +infty }{mathop{lim }}\,n{{a}_{n}}=0$

    则对任意的$varepsilon 0$,总可以找到一个正整数$N(varepsilon )$,使得当时,总有$left| n{{a}_{n}} ight|frac{varepsilon }{2}$

    当$nN(varepsilon )$就有$left| n{{a}_{n}} ight|frac{varepsilon }{2}$的最小自然数${{N}_{1}}$,当$n{{N}_{1}}$时,有

    $left| frac{sumlimits_{k=0}^{n}{k{{a}_{k}}}}{n} ight|le frac{sumlimits_{k=0}^{n}{left| k{{a}_{k}} ight|}}{n}=frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}+frac{sumlimits_{k={{N}_{1}}+1}^{n}{left| k{{a}_{k}} ight|}}{n}frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}+frac{(n-{{N}_{1}})varepsilon }{2n}frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}+frac{varepsilon }{2}$

    考虑到$underset{n o +infty }{mathop{lim }}\,frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}=0$

    则对上述$varepsilon 0$,存在${{N}_{2}}0$,当$n{{N}_{2}}$时,有$frac{sumlimits_{k=0}^{n}{left| k{{a}_{k}} ight|}}{n}frac{varepsilon }{2}$

    令$N=max {{{N}_{1}},{{N}_{2}}}$,当$nN$时,有$frac{sumlimits_{k=0}^{n}{left| k{{a}_{k}} ight|}}{n}varepsilon $

    于是$underset{n o +infty }{mathop{lim }}\,{{delta }_{n}}=0$

    由题可知:$underset{n o +infty }{mathop{lim }}\,f(1-frac{1}{n})=s$

    于是存在$N0$,当$nN$时,有$left| f(1-frac{1}{n})-s ight|frac{varepsilon }{3},{{delta }_{n}}frac{varepsilon }{3},nleft| {{a}_{n}} ight|frac{varepsilon }{3}$

    记${{S}_{n}}=sumlimits_{k=0}^{n}{{{a}_{k}}}$,且${{S}_{n}}-s=f(x)-s+sumlimits_{k=0}^{n}{{{a}_{k}}(1-{{x}^{k}})-sumlimits_{k=n+1}^{+infty }{{{a}_{k}}{{x}^{k}}}}$

    注意到对每个$k$以及$xin (0,1)$,有$1-{{x}^{k}}=(1-x)(1+x+cdots +{{x}^{k-1}})le k(1-x)$

    因此,当$nN$且$xin (0,1)$时,有

    $left| {{S}_{n}}-s ight|le left| f(x)-s ight|+(1-x)sumlimits_{k=0}^{n}{kleft| {{a}_{n}} ight|}+frac{varepsilon }{3n(1-x)}$

    令$x=1-frac{1}{n}$,则$left| {{S}_{n}}-s ight|frac{varepsilon }{3}+frac{varepsilon }{3}+frac{varepsilon }{3}=varepsilon $

    即$sumlimits_{n=0}^{+infty }{{{a}_{n}}}$收敛且和为$s$

    六、(15分)讨论正数$alpha 0$的初值问题$left{egin{array}{ll} y = {left| y ight|^alpha } \ y(0) = 0 end{array} ight.$的解的稳定性

    解:由于$left| f(x,{{y}_{1}})-f(x,{{y}_{2}}) ight|=left| {{left| {{y}_{1}} ight|}^{alpha }}-{{left| {{y}_{2}} ight|}^{alpha }} ight|le left| y_{1}^{alpha }-y_{2}^{alpha } ight|le {{C}_{alpha }}{{left| {{y}_{1}}-{{y}_{2}} ight|}^{alpha }}$

    令$F(r)={{left| r ight|}^{alpha }}$,有

    $int_{0}^{{{r}_{1}}}{frac{dr}{F(r)}=}int_{0}^{{{r}_{1}}}{frac{dr}{{{left| r ight|}^{alpha }}}}$ $=left{egin{array}{ll} frac{1}{{1 - alpha }}{left| r ight|^{1 - alpha }}|_0^{{r_1}}, hbox{$alpha e 1$;} \ ln left| r ight||_0^{{r_1}}, hbox{$alpha=1$;} end{array} ight.$

    因此当$alpha ge 1$时,$int_{0}^{{{r}_{1}}}{frac{dr}{F(r)}=infty }$

    当$0alpha 1$时,$int_{0}^{{{r}_{1}}}{frac{dr}{F(r)}infty }$

    于是$alpha ge 1$时解唯一;当$0alpha 1$时解不唯一

    七、(15分)已知$A$是$n imes n$阶的非奇异复矩阵,求证:$A=UT$(其中$U$为酉矩阵,而$T$是对角线元素均大于$0$的对角矩阵)

    证明:设$A={{({{a}_{ij}})}_{n imes n}},left| A ight| e 0$,令$A=({{alpha }_{1}},{{alpha }_{2}},cdots ,{{alpha }_{n}})$

    其中${{alpha }_{i}}$为$A$的列向量,则${{alpha }_{1}},{{alpha }_{2}},cdots ,{{alpha }_{n}}$线性无关

    由施密特正交化,令

    $left{egin{array}{ll} {eta _1} = {alpha _1}, \ {eta _2} = {alpha _2} - frac{{({alpha _2},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1}, \ vdots \ {eta _n} = {alpha _n} - frac{{({alpha _n},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1} - cdots - frac{{({alpha _n},{eta _{n - 1}})}}{{({eta _{n - 1}},{eta _{n - 1}})}}{eta _{n - 1}} end{array} ight.$

    其中$(alpha ,eta )=alpha eta $,则

    $left{egin{array}{ll} {alpha _1} = {eta _1}, \ {alpha _2} = frac{{({alpha _2},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1} + {eta _2}, \ vdots \ {alpha _n} = frac{{({alpha _n},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1} - cdots - frac{{({alpha _n},{eta _{n - 1}})}}{{({eta _{n - 1}},{eta _{n - 1}})}}{eta _{n - 1}} + {eta _n} end{array} ight.$

    于是

    $A=({{alpha }_{1}},{{alpha }_{2}},cdots ,{{alpha }_{n}})$$ =({eta _1},{eta _2}, cdots ,{eta _n})left(egin{array}{cccc} 1 {{b_{12}}} cdots {{b_{1n}}} \ 0 1 cdots {{b_{1n}}} \ vdots vdots ddots vdots \  0 0 cdots 1 end{array} ight) $

    其中${b_{ij}}=left{egin{array}{ll} frac{{({alpha _j},{eta _i})}}{{({eta _i},{eta _i})}}, hbox{$i e j$;} \ 1, hbox{$i = j$.} end{array} ight.$

    将${{eta }_{i}}$单位化,即${{gamma }_{i}}=frac{{{eta }_{i}}}{left| {{eta }_{i}} ight|},left| {{eta }_{i}} ight|=sqrt{eta _{i}^{}{{eta }_{i}}}0,i=1,2,cdots ,n$

    令$U=({{gamma }_{1}},{{gamma }_{2}},cdots ,{{gamma }_{n}})$,则$U$为酉矩阵,且

    $A=({gamma _1},{gamma _2},cdots ,{gamma _n})$$ left(egin{array}{cccc} {left| {{eta _1}} ight|} \ {left| {{eta _2}} ight|} \ ddots \  {left| {{eta _n}} ight|} end{array} ight) $$ left(egin{array}{cccc} 1 {{b_{12}}} cdots {{b_{1n}}} \ 0 1 cdots {{b_{1n}}} \ vdots vdots ddots vdots \  0 0 cdots 1 end{array} ight) $=UT

    其中$T=$$ left(egin{array}{cccc} {left| {{eta _1}} ight|} \ {left| {{eta _2}} ight|} \ ddots \  {left| {{eta _n}} ight|} end{array} ight) $$ left(egin{array}{cccc} 1 {{b_{12}}} cdots {{b_{1n}}} \ 0 1 cdots {{b_{1n}}} \ vdots vdots ddots vdots \  0 0 cdots 1 end{array} ight) $$ =left(egin{array}{cccc} {left| {{eta _1}} ight|} \ {left| {{eta _2}} ight|} \ ddots \  {left| {{eta _n}} ight|} end{array} ight) $是主对角元为正的上三角阵

    八、(20分)设$V={{M}_{2}}(C)$是二阶复方阵全体在通常运算下构成的复数域$C$上的线性空间$ A=left(egin{array}{cccc} a b \ c d end{array} ight) $$ in V$定义$V$上的线性变换为 $f(X)=XA,forall Xin V$

    (1)求$f$在$V$的基

    [{E_{11}} = left( {egin{array}{*{20}{c}} 10\ 00 end{array}} ight),{E_{12}} = left( {egin{array}{*{20}{c}} 01\ 00 end{array}} ight),{E_{21}} = left( {egin{array}{*{20}{c}} 00\ 10 end{array}} ight),{E_{22}} = left( {egin{array}{*{20}{c}} 00\ 01 end{array}} ight)]

    下的矩阵$M;$

    (2)请给出$V$关于$f$的两个非零不变子空间${{V}_{1}},{{V}_{2}}$,使得$V={{V}_{1}}oplus {{V}_{2}}$(要求给出${{V}_{1}},{{V}_{2}}$的基,并阐述“${{V}_{1}},{{V}_{2}}$关于$f$是不变的”以及“$V={{V}_{1}}oplus {{V}_{2}}$”的理由);

    (3)证明:存在$V$的一个基使得$f$在这个基下的矩阵为对角阵当且仅当$A$与对角阵相似.

    解:

    (1)由定义知:

    $f({E_{11}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} a \ b \ 0 \ 0  end{array} ight) $,$f({E_{12}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} c \ d \ 0 \ 0  end{array} ight) $

    $f({E_{21}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} 0 \ 0 \ a \ b  end{array} ight) $,$f({E_{22}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} 0 \ 0 \ c \ d  end{array} ight) $

    于是$f({E_{11}},{E_{12}},{E_{21}},{E_{22}})$$  = ({E_{11}},{E_{12}},{E_{21}},{E_{22}})left(egin{array}{cccc} a c 0 0 \ b d 0 0 \ 0 0 a c \  0 0 b d end{array} ight) $

    即对应的矩阵为$left(egin{array}{cccc} a c 0 0 \ b d 0 0 \ 0 0 a c \  0 0 b d end{array} ight) $

    (2)令${{V}_{1}}=L({{E}_{11}},{{E}_{12}}),{{V}_{2}}=L({{E}_{21}},{{E}_{22}})$,则${{V}_{1}},{{V}_{2}}$是关于$f$的不变子空间,理由如下

    对任意的${k_{11}}{E_{11}} + {k_{12}}{E_{12}}$$  =left(egin{array}{cccc} {{k_{11}}} {{k_{12}}} \ 0 0  end{array} ight) $$ in V$,有

    $f({k_{11}}{E_{11}} + {k_{12}}{E_{12}})$$  =left(egin{array}{cccc} {{k_{11}}} {{k_{12}}} \ 0 0  end{array} ight) $$left(egin{array}{cccc} a c \ b d  end{array} ight) $$=left(egin{array}{cccc} {a{k_{11}} + c{k_{12}}} {b{k_{11}} + d{k_{12}}} \ 0 0  end{array} ight) $$ in V$

    则${{V}_{1}}$是关于$f$的不变子空间

    同理可证${{V}_{2}}$是关于$f$的不变子空间

    且$dim{{V}_{1}}=dim{{V}_{2}}=1,{{V}_{1}}cap {{V}_{2}}={0},dim{{V}_{1}}+dim{{V}_{2}}=2$

    于是${{V}_{1}}oplus {{V}_{2}}=V$

    (3)

    充分性:设$A={{P}^{-1}}diag({{lambda }_{1}},{{lambda }_{2}})P$,其中${{lambda }_{1}},{{lambda }_{2}}$是$A$的全部特征值

    则$f({{E}_{11}}P)={{lambda }_{1}}{{E}_{11}}P,f({{E}_{12}}P)={{lambda }_{2}}{{E}_{12}}P,f({{E}_{21}}P)={{lambda }_{1}}{{E}_{21}}P,f({{E}_{22}}P)={{lambda }_{2}}{{E}_{22}}P$

    于是$f$在基${{E}_{11}}P,{{E}_{12}}P,{{E}_{21}}P,{{E}_{22}}P$下的矩阵为$ left(egin{array}{cccc} {{lambda _1}} \ {{lambda _2}} \ {{lambda _3}} \  {{lambda _4}} end{array} ight) $

    必要性:若$A$不与对角阵相似

    由于$A$是复矩阵,故存在可逆矩阵$Q$,使得$A=$$  {Q^{ - 1}}left(egin{array}{cccc} l k \ 0 l  end{array} ight) $$Q$,$k e 0$

    于是

    $f({{E}_{11}}Q)=l{{E}_{11}}Q+k{{E}_{12}}Q,f({{E}_{12}}Q)=l{{E}_{12}}Q,f({{E}_{21}}Q)=l{{E}_{21}}Q+k{{E}_{22}}Q,f({{E}_{22}}Q)=l{{E}_{22}}Q$

    即$f$在基${{E}_{11}}Q,{{E}_{12}}Q,{{E}_{21}}Q,{{E}_{22}}Q$下的矩阵为$ left(egin{array}{cccc} l \ k l \ l \  k l end{array} ight) $

    而$B$的初等因子为${{(lambda -l)}^{2}},{{(lambda -l)}^{2}}$,故$B$不与对角阵相似,矛盾

     

  • 相关阅读:
    LeetCode 295. Find Median from Data Stream (堆)
    LeetCode 292. Nim Game(博弈论)
    《JavaScript 模式》读书笔记(4)— 函数2
    《JavaScript 模式》读书笔记(4)— 函数1
    《JavaScript 模式》读书笔记(3)— 字面量和构造函数3
    《JavaScript 模式》读书笔记(3)— 字面量和构造函数2
    《JavaScript 模式》读书笔记(3)— 字面量和构造函数1
    《JavaScript 模式》读书笔记(2)— 基本技巧3
    《JavaScript 模式》读书笔记(2)— 基本技巧2
    《JavaScript 模式》读书笔记(2)— 基本技巧1
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4054279.html
Copyright © 2011-2022 走看看