zoukankan      html  css  js  c++  java
  • [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$ex F(u,v)=sef{x,u}sef{y,v}+sef{z,u}sef{w,v} eex$$ is elementary.

     

    Solution.

     

    (1). If $w=ky$ for some $kinbC$, then $$eex ea F(u,v)&=sef{x,u}sef{y,v}+sef{z,u}sef{ky,v}\ &=sef{x+kz,u}sef{y,v}, eea eeex$$ and thus $F$ is elementary.

     

    (2). We now show that the condition that $w$ is a multiplier of $y$ is necessary to ensure that $F$ is elementary. It can be proved as follows easily; however, when I have not got it, it really hindered me to go forward this fun journey of the matrix analysis. We choose a basis of $scrH$: $$ex u_1,cdots,u_n eex$$ where $u_1=x,u_2=y,u_3=z$. And for $uin scrH$, we denote by $u_i$ the coordinate of $u$ with respect to this basis. Since $F$ is elementary, there exist $a,bin scrH$ such that $$ex F(u,v)=sef{x,u}sef{y,v}+sef{z,u}sef{w,v} =sef{a,u}sef{b,v}. eex$$ Taking $u=u_1$ or $u_3$, $v=u_j$ for arbitrary $j$, we obtain $$ex F(u_1,u_j)=y_j=a_1b_j,quad F(u_3,u_j)=w_j=a_3b_j. eex$$ Consequently, if $a_3=0$, then $w=0=0y$; if $a_3 eq 0$s, then $$ex w_j=a_3b_j=frac{a_3}{a_1}b_j a w=frac{a_3}{a_1}y. eex$$ Here $a_1 eq 0$ (otherwise $y=0$).

  • 相关阅读:
    进程 线程 协程
    TCP的滑动窗口和网络拥塞控制
    Golang中函数结构体,将函数转换为接口
    go的调度 与 go 的GC
    未来程序员这个工种会如何进化与“35岁之殇”的思考
    golang 实现 LRU
    golang 单例模式实现
    内存泄露及内存溢出,解决方案
    Jvm调优参数
    HttpUtil
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4108468.html
Copyright © 2011-2022 走看看