zoukankan      html  css  js  c++  java
  • 拓扑学中凝聚点的几个等价定义

    下载链接: http://math.funbbs.me/viewthread.php?tid=8&extra=page%3D1

    张祖锦, 杨兰萍, 李文鑫. 拓扑学中凝聚点的几个等价定义[J]. 赣南师范大学学报, 2017, 38 (03) : 6—7.

    拓扑学中凝聚点的几个等价定义

    Several equivalent definitions of accumulation points

    张祖锦

    Zujin Zhang

    赣南师范大学数学与计算机科学学院

    School of Mathematics and Computer Sciences, Gannan Normal University

    (86) 07978393663

    [email]zhangzujin361@163.com[/email]

    摘要: 本文回忆了拓扑学中的在 $A_1$ 或 $T_1$ 空间中凝聚点的等价定义, 并给出了在 $A_1$ 且 $T_1$ 空间中凝聚点的又一个等价定义.

    Abstract: In this paper, we first recall equivalent definitions of accumulation points in $A_1$ or $T_1$ spaces, then formulate a new equivalent definition in $A_1$ and $T_1$ spaces.

    1. 介绍

    在实分析中, 凝聚点是一个很重要的概念. 比如讨论区域 $Dsubset bR^2$ 上二元函数 $f(x,y)$ 在 $(x_0,y_0)inbR^2$ 处的极限时, 首先必须假设 $(x_0,y_0)$ 是 $D$ 的凝聚点 (参考 [2] 第 93 页). 书 [2] 第 163 页给出了凝聚点的三个等价定义. 我们叙述如下: 设 $Esubset bR^n$, $x_0inbR^n$, 则以下论述等价:

    (1) $x_0$ 的任一邻域内, 至少含有一个属于 $E$ 而异于 $x_0$ 点;

    (2) $x_0$ 的任一邻域内都含有无穷多个属于 $E$ 的点;
    (3) 存在 $E$ 中互异的点列 $x_n o x_0$.

    以上三个论述的等价性依赖于 $bR^n$ 的特殊结构. 在一般的拓扑空间中, 已不再成立. 设 $X$ 是一个集合, $scrT$ 是 $X$ 的子集族, 若满足

    (1) $vno,XinscrT$;
    (2) $A,BinscrT a Acap BinscrT$;
    (3) $scrT_1subset scrT a cup_{AinscrT_1}AinscrT$,

    则称 $scrT$ 是 $X$ 上的一个拓扑, $(X,scrT)$ 是一个拓扑空间, $scrT$ 中的元称为开集. 在拓扑空间 $(X,scrT)$ 中, 我们可以定义邻域的概念. 设 $x_0in X$, $Usubset X$, 若 $exists Oin scrT,st x_0in Osubset U$, 则称 $U$ 是 $x_0$ 的一个邻域. 记 $scrU_{x_0}=sed{U; Umbox{ 是 }x_0mbox{ 的邻域}}$. 有了邻域的概念后, 我们就可以定义凝聚点的概念. 若 $forall UinscrU_{x_0}, Ucap (As sed{x_0}) eq vno$, 则称 $x_0$ 是 $E$ 的凝聚点. 由 [3] 定理 5.1.10 知在 $A_1$ 空间中, $x_0$ 是 $E$ 的聚点当且仅当 $exists As sed{x} i x_n o x_0$. 由 [3] 定理 6.1.3 知在 $T_1$ 空间中, $x_0$ 是 $E$ 的凝聚点当且仅当 $forall Uin scrU_{x_0}, Ucap E$ 是无限集. 这两个等价定义直观是容易理解的. 事实上, $A_1$ 空间中每个点处都有一个可数邻域基, 而有一个递减的可数邻域基, 这个`` 可数''就跟可数点列有自然的关系; $T_1$ 空间中有限点集是闭集, 这个``有限'' 就和无限有自然的联系.

    一个自然的问题就是: 在什么样的拓扑空间中, $x_0$ 是 $E$ 的凝聚点当且仅当存在 $E$ 中互异点列 $x_n o x_0$? 我们发现只要拓扑空间是 $A_1$ 且 $T_1$ 的, 则上述问题成立, 见下文的主要定理.

    2. 主要定理及证明

    定理 1. 设拓扑空间 $(X,scrT)$ 是 $A_1$ 空间, 也是 $T_1$ 空间, 则 $x_0$ 是 $E$ 的凝聚点当且仅当存在 $E$ 中互异点列 $x_n o x_0$.

    证明. $la$: 设存在 $E$ 中互异点列 $x_n o x_0$, 则由点列 $sed{x_n}$ 互异知该点列至多只有一个 (不妨设为 $x_{n_0}$) 和 $x_0$ 重合, 而 $sed{x_n}_{n=n_0+1}^infty$ 就是 $Essed{x_0}$ 中的点列, 极限为 $x_0$. 由 $A_1$ 空间中凝聚点的刻画 ([3] 定理 ) 即知 $x_0$ 是 $E$ 的凝聚点.

    $ a$: 若 $x_0$ 是 $E$ 的凝聚点, 则由 $X$ 是 $A_1$ 空间知 $x_0$ 处有一个可数邻域基 $sed{U_n}_{n=1}^infty$. 令 $V_n=U_1cap cdots U_n$ 后容易知道 $sed{V_n}_{n=1}^infty$ 是 $x_0$ 处的一个递减可数邻域基. 往递推给出 $E$ 中互异点列 $x_n o x_0$. 由 $x_0$
    是 $E$ 的凝凝聚点知 $V_1cap (Es sed{x_0}) eq vno$. 任意取定 $x_1in V_1cap (Essed{x_0})$. 若互异的 $x_1,cdots,x_nin V_ncap (Essed{x_0})$ 已给定, 则由 $X$ 是 $T_1$ 空间知 $sed{x_1,cdots,x_n}$ 是闭集, 而 $V_{n+1}cap sed{x_1,cdots,x_n}^c$ 是开集, 而是 $x_0$ 的一个开邻域. 由 $x_0$
    是 $E$ 的凝凝聚点即知该邻域与 $Essed{x_0}$ 有交. 任意取定 $x_{n+1}in [V_{n+1}cap sed{x_1,cdots,x_n}^c]cap (Essed{x_0})$ 即可.

    综上, 我们证明了存在互异点列 $x_nin V_ncap (Es sed{x_0})$. 该 $sed{x_n}$ 收敛于 $x_0$. 事实上, 对 $forall Uin scrU_{x_0}$, 由 $sed{V_n}_{n=1}^infty$ 是 $x_0$ 处的邻域基知 $exists V_Nsubset U$. 又由 $sed{V_n}_{n=1}^infty$ 递减知 $ x_nin V_nsubset V_Nsubset U.$ 这即表明 $x_n o x_0$.

    注记. 下面两个例子表明定理中的 $A_1$ 性和 $T_1$ 性缺一不可.

    (1) 设 $X$ 是包含有不可数个点的可数补空间, 则由 [3] 例 5.1.1 知 $X$ 不是 $A_1$ 空间, 由 [3] 例 6.1.1 知 $X$ 是 $T_1$ 空间. 容易知道 $forall xin X$, $x$ 都是 $X$ 的凝聚点. 我们可以用反证法来证明. 若 $exists x_0in X$, 不是 $X$ 的凝聚点, 则 $exists Uin scrU_x,st Ucap (Xs sed{x})=vno a Xs sed{x}subset U^c.$ 但 $Xssed{x}$ 是不可数集, $U$ 包含着一个开集, 而 $U^c$ 是有限集. 这是一个矛盾.

    任取 $xin X$, 由上论述知 $x$ 是 $X$ 的凝聚点, 但不存在 $X$ 中互异的点列 $sed{x_n}$ 的极限为 $x$. 这也可以利用反证法来证明. 若 $X$ 中存在互异点列 $sed{x_n}$ 的极限为 $x$, 由 [3] 例 2.7.1 即知 $exists N,st ngeq N a x_n=x$. 这与 $sed{x_n}$ 的互异性矛盾.

    (2) 设 $X=sed{0,1}$, $scrT=sed{vno,sed{0},X}$, 则 $(X,scrT)$ 不是 $T_1$ 空间, 但是 $A_1$ 空间. 容易看出 $1$ 是 $sed{0}$ 的凝聚点. 但显然 $sed{0}$
    中没有互异点列的极限为 $1$.

    参考文献

    [1] 华东师范大学数学系, 数学分析 (第三版) 上册, 高等教育出版社, 2010 年.

    [2] 华东师范大学数学系, 数学分析 (第三版) 下册, 高等教育出版社, 2010 年.

    [3] 熊金城, 点集拓扑学讲义 (第四版), 高等教育出版社, 2011 年.

  • 相关阅读:
    【 数据结构(C语言)】栈的应用——行编辑程序
    【 数据结构 (C语言)】栈的应用(二)——括号匹配问题
    节点
    页面加载--延迟加载
    雅黑php 探针
    Swiper 触屏滑动切换
    tab 选择悬停展示
    翻牌抽奖功能讲解
    公告信息滚动功能
    织梦提交表单不进行跳转
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/9076182.html
Copyright © 2011-2022 走看看