zoukankan      html  css  js  c++  java
  • 用asp.net core 把用户访问记录优化到极致

    菜菜呀,前几天做的用户空间,用户反映有时候比较慢呀

    CEO,CTO,CFO于一身的CXO

    是吗?

    菜菜

    我把你拉进用户反馈群,你解决一下呀

    CEO,CTO,CFO于一身的CXO

    (完了,以后没清净时候了)我尽量吧,X总,我涨工资的事.....

    菜菜

    这不来年底了吗,年会奖品可是很丰厚的,希望你抽个一等奖呀,你先出去吧!

    CEO,CTO,CFO于一身的CXO

    .........,那答应的年终奖的事?

    菜菜

    不是给你发了200元的京东卡吗

    CEO,CTO,CFO于一身的CXO

    .............转身默默离开,羊驼慢慢飘过....

    菜菜


    祝愿大家不要像菜菜这般苦逼,年中奖大大滴!!!

    在没有年终奖的日子里,工作依然还要继续.....一张冰与火的图尽显无奈


        还记得菜菜不久之前设计的用户空间吗?没看过的同学请进传送门=》设计高性能访客记录系统


        还记得遗留的什么问题吗?菜菜来重复一下,在用户访问记录的缓存中怎么来判断是否有当前用户的记录呢?链表虽然是我们这个业务场景最主要的数据结构,但并不是当前这个问题最好的解决方案,所以我们需要一种能快速访问元素的数据结构来解决这个问题?那就是今天我们要谈一谈的 散列表


    散列表


    散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表

        散列表其实可以约等于我们常说的Key-Value形式。散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。为什么要用数组呢?因为数组按照下标来访问元素的时间复杂度为O(1),不明白的同学可以参考菜菜以前的关于数组的文章。既然要按照数组的下标来访问元素,必然也必须考虑怎么样才能把Key转化为下标。这就是接下来要谈一谈的散列函数。

    散列函数

        散列函数通俗来讲就是把一个Key转化为数组下标的黑盒。散列函数在散列表中起着非常关键的作用。散列函数,顾名思义,它是一个函数。我们可以把它定义成hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。

    那一个散列函数有哪些要求呢?

    1.  散列函数计算得到的值是一个非负整数值。

    2.  如果 key1 = key2,那hash(key1) == hash(key2) 

    3.  如果 key1 ≠ key2,那hash(key1) ≠ hash(key2) 


        简单说一下以上三点,第一点:因为散列值其实就是数组的下标,所以必须是非负整数(>=0),第二点:同一个key计算的散列值必须相同。重点说一下第三点,其实第三点只是理论上的,我们想象着不同的Key得到的散列值应该不同,但是事实上,这一点很难做到。我们可以反证一下,如果这个公式成立,我计算无限个Key的散列值,那散列表底层的数组必须做到无限大才行。像业界比较著名的MD5、SHA等哈希算法,也无法完全避免这样的冲突。当然如果底层的数组越小,这种冲突的几率就越大。所以一个完美的散列函数其实是不存在的,即便存在,付出的时间成本,人力成本可能超乎想象。

    散列冲突

        既然再好的散列函数都无法避免散列冲突,那我们就必须寻找其他途径来解决这个问题。

    1. 寻址

        如果遇到冲突的时候怎么办呢?方法之一是在冲突的位置开始找数组中空余的空间,找到空余的空间然后插入。就像你去商店买东西,发现东西卖光了,怎么办呢?找下一家有东西卖的商家买呗。不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。


    散列表的装载因子 = 填入表中的元素个数 / 散列表的长度


        装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降. 假设散列函数为 f=(key%1000),如下图所示


    2. 链地址法(拉链法)

        拉链法属于一种最常用的解决散列值冲突的方式。基本思想是数组的每个元素指向一个链表,当散列值冲突的时候,在链表的末尾增加新元素。查找的时候同理,根据散列值定位到数组位置之后,然后沿着链表查找元素。如果散列函数设计的非常糟糕的话,相同的散列值非常多的话,散列表元素的查找会退化成链表查找,时间复杂度退化成O(n)

    3. 再散列法

        这种方式本质上是计算多次散列值,那就必然需要多个散列函数,在产生冲突时再使用另一个散列函数计算散列值,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。

    4. 建立一个公共溢出区

        至于这种方案网络上介绍的比较少,一般应用的也比较少。可以这样理解:散列值冲突的元素放到另外的容器中,当然容器的选择有可能是数组,有可能是链表甚至队列都可以。但是无论是什么,想要保证散列表的优点还是需要慎重考虑这个容器的选择。


    扩展阅读


    1.  这里需要在强调一次,散列表底层依赖的是数组按照下标访问的特性(时间复杂度为O(1)),而且一般散列表为了避免大量冲突都有装载因子的定义,这就涉及到了数组扩容的特性:需要为新数组开辟空间,并且需要把元素copy到新数组。如果我们知道数据的存储量或者数据的大概存储量,在初始化散列表的时候,可以尽量一次性分配足够大的空间。避免之后的数组扩容弊端。事实证明,在内存比较紧张的时候,优先考虑这种一次性分配的方案也要比其他方案好的多。

    2.  散列表的寻址方案中,有一种特殊情况:如果我寻找到数组的末尾仍然无空闲位置,怎么办呢?这让我想到了循环链表,数组也一样,可以组装一个循环数组。末尾如果无空位,就可以继续在数组首位继续搜索。

    3.  关于散列表元素的删除,我觉得有必要说一说。首先基于拉链方式的散列表由于元素在链表中,所有删除一个元素的时间复杂度和链表是一样的,后续的查找也没有任何问题。但是寻址方式的散列表就不同了,我们假设一下把位置N元素删除,那N之后相同散列值的元素就搜索不出来了,因为N位置已经是空位置了。散列表的搜索方式决定了空位置之后的元素就断片了....这也是为什么基于拉链方式的散列表更常用的原因之一吧。

    4.  在工业级的散列函数中,元素的散列值做到尽量平均分布是其中的要求之一,这不仅仅是为了空间的充分利用,也是为了防止大量的hashCode落在同一个位置,设想在拉链方式的极端情况下,查找一个元素的时间复杂度退化成在链表中查找元素的时间复杂度O(n),这就导致了散列表最大特性的丢失。

    5拉链方式实现的链表中,其实我更倾向于使用双向链表,这样在删除一个元素的时候,双向链表的优势可以同时发挥出来,这样可以把散列表删除元素的时间复杂度降低为O(1)。

    6.  在散列表中,由于元素的位置是散列函数来决定的,所有遍历一个散列表的时候,元素的顺序并非是添加元素先后的顺序,这一点需要我们在具体业务应用中要注意。



     Net Core c# 代码


    有几个地方菜菜需要在强调一下:

    1.  在当前项目中用的分布式框架为基于Actor模型的Orleans,所以我每个用户的访问记录不必担心多线程问题。

    2.  我没用使用hashtable这个数据容器,是因为hashtable太容易发生装箱拆箱的问题。

    3.  使用双向链表是因为查找到了当前元素,相当于也查找到了上个元素和下个元素,当前元素的删除操作时间复杂度可以为O(1)


     class UserViewInfo
        {
            //用户ID
            public int UserId { getset; }
            //访问时间,utc时间戳
            public int Time { getset; }
            //用户姓名
            public string UserName { getset; }
        }
    class UserSpace
        {
            //缓存的最大数量
            const int CacheLimit = 1000;
            //这里用双向链表来缓存用户空间的访问记录
            LinkedList<UserViewInfo> cacheUserViewInfo = new LinkedList<UserViewInfo>();
            //这里用哈希表的变种Dictionary来存储访问记录,实现快速访问,同时设置容量大于缓存的数量限制,减小哈希冲突
            Dictionary<int, UserViewInfo> dicUserView = new Dictionary<int, UserViewInfo>(1250);

            //添加用户的访问记录
            public void AddUserView(UserViewInfo uv)
            
    {
                //首先查找缓存列表中是否存在,利用hashtable来实现快速查找
                if (dicUserView.TryGetValue(uv.UserId, out UserViewInfo currentUserView))
                {
                    //如果存在,则把该用户访问记录从缓存当前位置移除,添加到头位置
                    cacheUserViewInfo.Remove(currentUserView);
                    cacheUserViewInfo.AddFirst(currentUserView);
                }
                else
                {
                    //如果不存在,则添加到缓存头部 并添加到哈希表中
                    cacheUserViewInfo.AddFirst(uv);
                    dicUserView.Add(uv.UserId, uv);
                }
                //这里每次都判断一下缓存是否超过限制
                if (cacheUserViewInfo.Count > CacheLimit)
                {
                    //移除缓存最后一个元素,并从hashtable中删除,理论上来说,dictionary的内部会两个指针指向首元素和尾元素,所以查找这两个元素的时间复杂度为O(1)
                    var lastItem = cacheUserViewInfo.Last.Value;
                    dicUserView.Remove(lastItem.UserId);
                    cacheUserViewInfo.RemoveLast();
                }
            }
        }

  • 相关阅读:
    nefu 628 Garden visiting
    codeforces 814 C. An impassioned circulation of affection 【尺取法 or DP】
    bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
    Codeforces Round #423 (Div. 2)
    hdu 5955 Guessing the Dice Roll 【AC自动机+高斯消元】
    poj1322 Chocolate 【 概率DP 】
    poj 3414 Pots 【BFS+记录路径 】
    hdu5194 DZY Loves Balls 【概率论 or 搜索】
    51nod 1515 明辨是非 [并查集+set]
    hdu 1175 连连看 [DFS]
  • 原文地址:https://www.cnblogs.com/zhanlang/p/10295782.html
Copyright © 2011-2022 走看看