Description
Consider equations having the following form:
a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.
It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.
Determine how many solutions satisfy the given equation.
a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.
It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.
Determine how many solutions satisfy the given equation.
Input
The input consists of several test cases. Each test case consists of a single line containing the 4 coefficients a, b, c, d, separated by one or more blanks.
End of file.
End of file.
Output
For each test case, output a single line containing the number of the solutions.
Sample Input
1 2 3 -4
1 1 1 1
Sample Output
39088
0
分析:与上题相同
代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 6 const int mod = 40007; 7 8 struct Node { 9 int to; 10 int next; 11 }e[mod + 10]; 12 13 int head[mod + 10]; 14 15 int tot; 16 17 void Add(int u, int v) { 18 e[tot].to = v; 19 e[tot].next = head[u]; 20 head[u] = tot++; 21 } 22 23 int Find(int u, int v) { 24 int cnt = 0; 25 for(int i = head[u]; i; i = e[i].next) { 26 if(e[i].to == v) cnt++; 27 } 28 return cnt; 29 } 30 31 void init() { 32 memset(head, 0, sizeof(head)); 33 tot = 1; 34 } 35 36 int Fabs(int x) { 37 return x > 0 ? x : - x; 38 } 39 40 int pre[105]; 41 42 int main() { 43 int a, b, c, d; 44 for(int i = 1; i <= 100; i++) { 45 pre[i] = i * i; 46 } 47 while(EOF != scanf("%d %d %d %d",&a, &b, &c, &d) ) { 48 init(); 49 for(int i = 1; i <= 100; i++) { 50 for(int j = 1; j <= 100; j++) { 51 int num = a * pre[i] + b * pre[j]; 52 int p = Fabs(num) % mod; 53 Add(p, num); 54 } 55 } 56 int ans = 0; 57 for(int i = 1; i <= 100; i++) { 58 for(int j = 1; j <= 100; j++) { 59 int num = c * pre[i] + d * pre[j]; 60 int p = Fabs(num) % mod; 61 ans += Find(p, - num); 62 } 63 } 64 printf("%d ", ans << 4); 65 } 66 return 0; 67 }