zoukankan      html  css  js  c++  java
  • hihoCoder1032 : 最长回文子串【manacher】

    大意:求最长回文字串:

    分析:

    1、暴力方法。。枚举头尾,判断是不是回文串   0(n^3)

    3、寻找中点往两边暴力  n^2

    代码

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 const int maxn = 55;
     7 
     8 char str[maxn];
     9 int main() {
    10     int n;
    11     while(EOF != scanf("%d",&n)) {
    12         scanf("
    %s",str);
    13         int len = strlen(str);
    14         int MaxLen = 1;
    15         for(int i = 0; i < len; i++) {
    16             int j = i - 1, k = i + 1;
    17             while(j >= 0 && k < len && str[j] == str[k]) {
    18                 j--; k++;
    19             }
    20             MaxLen = max(MaxLen, k - j - 1);
    21             if(i < len - 1 && str[i] == str[i + 1]) {
    22                 j = i - 1; k = i + 2;
    23                 while(j >= 0 && k < len && str[j] == str[k]) {
    24                     j--; k++;
    25                 }
    26                 MaxLen = max(MaxLen, k - j - 1);
    27             }
    28         }
    29         printf("%d
    ", MaxLen);
    30     }
    31 }
    View Code

    2、dp dp[i][j] = 1 代表 i -- j 为 回文串 0表示不是   那么 dp[i][j] = dp[i + 1][j-1]  (s[i] == s[j])  dp[i][j] = 0   (s[i] != s[j])

    所以只要预处理出来 每个字符和连续两个字符的    然后枚举长度  

    代码:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 const int maxn = 55;
     7 
     8 int dp[maxn][maxn];
     9 
    10 char str[maxn];
    11 
    12 int main() {
    13     int n;
    14     while(EOF != scanf("%d",&n)){
    15         scanf("
    %s",str);
    16         int len = strlen(str);
    17         memset(dp, 0, sizeof(dp));
    18         int MaxLen = 1;
    19         for(int i = 0; i < len; i++) {
    20             dp[i][i] = 1;
    21             if(i < len - 1 && str[i] == str[i + 1]) {
    22                 dp[i][i + 1] = 1;
    23                 MaxLen = 2;
    24             }
    25         }
    26         for(int l = 2; l < len; l++) {
    27             for(int i = 0; i < len; i++) {
    28                 int j = i + l;
    29                 if(j < len) {
    30                     if(str[i] == str[j]) {
    31                         dp[i][j] = dp[i + 1][j - 1];
    32                         if(dp[i][j] == 1) {
    33                             MaxLen = max(MaxLen, l + 1);
    34                         }
    35                     }
    36                 }
    37             }
    38         }
    39         printf("%d
    ", MaxLen);
    40     }
    41     return 0;
    42 }
    View Code

    3、 O(n)的manacher算法  

    http://blog.csdn.net/ggggiqnypgjg/article/details/6645824

    讲的很细致

    代码:

     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 using namespace std;
     5 
     6 const int maxn = 1000005 << 1;
     7 
     8 void manacher(char *str, int p[maxn]) {
     9     int len = strlen(str);
    10     for(int i = len - 1; i >= 0; i--) {
    11         str[i << 1 | 1] = '#';
    12         str[(i + 1) << 1] = str[i];
    13     }
    14     str[0] = '$';
    15     str[len << 1 | 1] = '#';
    16     str[(len + 1) << 1] = 0;
    17     int id = 0;
    18     for(int i = 0; str[i]; i++) {
    19         if(id + p[id] > i) {
    20             p[i] = min(p[id * 2 - i], id + p[id] - i);
    21         } else {
    22             p[i] = 1;
    23         }
    24         while(str[i + p[i]] == str[i - p[i]]) p[i]++;
    25         if(i + p[i] > id + p[id]) {
    26             id = i;
    27         }
    28     }
    29 }
    30 
    31 char str[maxn];
    32 int p[maxn];
    33 int main() {
    34     int n;
    35     scanf("%d",&n);
    36     while(n--) {
    37         scanf("
    %s",str);
    38         manacher(str,p);
    39         int Max = 0;
    40         for(int i = 0; str[i]; i++) {
    41             Max = max(Max, p[i] - 1);
    42         }
    43         printf("%d
    ",Max);
    44     }
    45 }
    View Code
  • 相关阅读:
    LeetCode 453 Minimum Moves to Equal Array Elements
    LeetCode 112 Path Sum
    LeetCode 437 Path Sum III
    LeetCode 263 Ugly Number
    Solutions and Summay for Linked List Naive and Easy Questions
    AWS–Sysops notes
    Linked List
    All About Linked List
    datatable fix error–Invalid JSON response
    [转]反编译c#的相关问题
  • 原文地址:https://www.cnblogs.com/zhanzhao/p/4828725.html
Copyright © 2011-2022 走看看