zoukankan      html  css  js  c++  java
  • StatisticalOutlierRemoval源码

    源代码

      1 *
      2  * Software License Agreement (BSD License)
      3  *
      4  *  Point Cloud Library (PCL) - www.pointclouds.org
      5  *  Copyright (c) 2010-2012, Willow Garage, Inc.
      6  *
      7  *  All rights reserved.
      8  *
      9  *  Redistribution and use in source and binary forms, with or without
     10  *  modification, are permitted provided that the following conditions
     11  *  are met:
     12  *
     13  *   * Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *   * Redistributions in binary form must reproduce the above
     16  *     copyright notice, this list of conditions and the following
     17  *     disclaimer in the documentation and/or other materials provided
     18  *     with the distribution.
     19  *   * Neither the name of the copyright holder(s) nor the names of its
     20  *     contributors may be used to endorse or promote products derived
     21  *     from this software without specific prior written permission.
     22  *
     23  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     24  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     25  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     26  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     27  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     28  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     29  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     30  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     31  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     33  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  *  POSSIBILITY OF SUCH DAMAGE.
     35  *
     36  * $Id$
     37  *
     38  */
     39 
     40 #ifndef PCL_FILTERS_IMPL_STATISTICAL_OUTLIER_REMOVAL_H_
     41 #define PCL_FILTERS_IMPL_STATISTICAL_OUTLIER_REMOVAL_H_
     42 
     43 #include <pcl/filters/statistical_outlier_removal.h>
     44 #include <pcl/common/io.h>
     45 
     46 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
     47 template <typename PointT> void
     48 pcl::StatisticalOutlierRemoval<PointT>::applyFilter (PointCloud &output)
     49 {
     50   std::vector<int> indices;
     51   if (keep_organized_)
     52   {
     53     bool temp = extract_removed_indices_;
     54     extract_removed_indices_ = true;
     55     applyFilterIndices (indices);
     56     extract_removed_indices_ = temp;
     57 
     58     output = *input_;
     59     for (int rii = 0; rii < static_cast<int> (removed_indices_->size ()); ++rii)  // rii = removed indices iterator
     60       output.points[(*removed_indices_)[rii]].x = output.points[(*removed_indices_)[rii]].y = output.points[(*removed_indices_)[rii]].z = user_filter_value_;
     61     if (!pcl_isfinite (user_filter_value_))
     62       output.is_dense = false;
     63   }
     64   else
     65   {
     66     applyFilterIndices (indices);
     67     copyPointCloud (*input_, indices, output);
     68   }
     69 }
     70 
     71 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
     72 template <typename PointT> void
     73 pcl::StatisticalOutlierRemoval<PointT>::applyFilterIndices (std::vector<int> &indices)
     74 {
     75   // Initialize the search class
     76   if (!searcher_)
     77   {
     78     if (input_->isOrganized ())
     79       searcher_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
     80     else
     81       searcher_.reset (new pcl::search::KdTree<PointT> (false));
     82   }
     83   searcher_->setInputCloud (input_);
     84 
     85   // The arrays to be used
     86   std::vector<int> nn_indices (mean_k_);
     87   std::vector<float> nn_dists (mean_k_);
     88   std::vector<float> distances (indices_->size ());
     89   indices.resize (indices_->size ());
     90   removed_indices_->resize (indices_->size ());
     91   int oii = 0, rii = 0;  // oii = output indices iterator, rii = removed indices iterator
     92 
     93   // First pass: Compute the mean distances for all points with respect to their k nearest neighbors
     94   int valid_distances = 0;
     95   for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii)  // iii = input indices iterator
     96   {
     97     if (!pcl_isfinite (input_->points[(*indices_)[iii]].x) ||
     98         !pcl_isfinite (input_->points[(*indices_)[iii]].y) ||
     99         !pcl_isfinite (input_->points[(*indices_)[iii]].z))
    100     {
    101       distances[iii] = 0.0;
    102       continue;
    103     }
    104 
    105     // Perform the nearest k search
    106     if (searcher_->nearestKSearch ((*indices_)[iii], mean_k_ + 1, nn_indices, nn_dists) == 0)
    107     {
    108       distances[iii] = 0.0;
    109       PCL_WARN ("[pcl::%s::applyFilter] Searching for the closest %d neighbors failed.
    ", getClassName ().c_str (), mean_k_);
    110       continue;
    111     }
    112 
    113     // Calculate the mean distance to its neighbors
    114     double dist_sum = 0.0;
    115     for (int k = 1; k < mean_k_ + 1; ++k)  // k = 0 is the query point
    116       dist_sum += sqrt (nn_dists[k]);
    117     distances[iii] = static_cast<float> (dist_sum / mean_k_);
    118     valid_distances++;
    119   }
    120 
    121   // Estimate the mean and the standard deviation of the distance vector
    122   double sum = 0, sq_sum = 0;
    123   for (size_t i = 0; i < distances.size (); ++i)
    124   {
    125     sum += distances[i];
    126     sq_sum += distances[i] * distances[i];
    127   }
    128   double mean = sum / static_cast<double>(valid_distances);
    129   double variance = (sq_sum - sum * sum / static_cast<double>(valid_distances)) / (static_cast<double>(valid_distances) - 1);
    130   double stddev = sqrt (variance);
    131   //getMeanStd (distances, mean, stddev);
    132 
    133   double distance_threshold = mean + std_mul_ * stddev;
    134 
    135   // Second pass: Classify the points on the computed distance threshold
    136   for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii)  // iii = input indices iterator
    137   {
    138     // Points having a too high average distance are outliers and are passed to removed indices
    139     // Unless negative was set, then it's the opposite condition
    140     if ((!negative_ && distances[iii] > distance_threshold) || (negative_ && distances[iii] <= distance_threshold))
    141     {
    142       if (extract_removed_indices_)
    143         (*removed_indices_)[rii++] = (*indices_)[iii];
    144       continue;
    145     }
    146 
    147     // Otherwise it was a normal point for output (inlier)
    148     indices[oii++] = (*indices_)[iii];
    149   }
    150 
    151   // Resize the output arrays
    152   indices.resize (oii);
    153   removed_indices_->resize (rii);
    154 }
    155 
    156 #define PCL_INSTANTIATE_StatisticalOutlierRemoval(T) template class PCL_EXPORTS pcl::StatisticalOutlierRemoval<T>;
    157 
    158 #endif  // PCL_FILTERS_IMPL_STATISTICAL_OUTLIER_REMOVAL_H_
    View Code

    最终会执行

    template <typename PointT> void
    pcl::StatisticalOutlierRemoval<PointT>::applyFilterIndices (std::vector<int> &indices)

    1、进行一些简单Initialize 

    // Initialize the search class
      if (!searcher_)
      {
        if (input_->isOrganized ())
          searcher_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
        else
          searcher_.reset (new pcl::search::KdTree<PointT> (false));
      }
      searcher_->setInputCloud (input_);

    2、定义一些变量

    // The arrays to be used
      std::vector<int> nn_indices (mean_k_);//搜索完邻域点对应的索引
      std::vector<float> nn_dists (mean_k_);//搜索完的每个邻域点与查询点之间的欧式距离
      std::vector<float> distances (indices_->size ());
      indices.resize (indices_->size ());
      removed_indices_->resize (indices_->size ());
      int oii = 0, rii = 0;  // oii = output indices iterator, rii = removed indices iterator
    

     3、求每个点的k邻域的均值

      // First pass: Compute the mean distances for all points with respect to their k nearest neighbors
      int valid_distances = 0;
      for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii)  // iii = input indices iterator
      {
        if (!pcl_isfinite (input_->points[(*indices_)[iii]].x) ||
            !pcl_isfinite (input_->points[(*indices_)[iii]].y) ||
            !pcl_isfinite (input_->points[(*indices_)[iii]].z))
        {
          distances[iii] = 0.0;
          continue;
        }
    
        // Perform the nearest k search
        if (searcher_->nearestKSearch ((*indices_)[iii], mean_k_ + 1, nn_indices, nn_dists) == 0)
        {
          distances[iii] = 0.0;
          PCL_WARN ("[pcl::%s::applyFilter] Searching for the closest %d neighbors failed.
    ", getClassName ().c_str (), mean_k_);
          continue;
        }
    
        // Calculate the mean distance to its neighbors
        double dist_sum = 0.0;
        for (int k = 1; k < mean_k_ + 1; ++k)  // k = 0 is the query point
          dist_sum += sqrt (nn_dists[k]);
        distances[iii] = static_cast<float> (dist_sum / mean_k_);//每个点都对应了一个距离变量
        valid_distances++;
      }

    4、估计距离的均值和标准差   不是邻域 ,是根据整个数据中的点均值和标准差

    // Estimate the mean and the standard deviation of the distance vector
      double sum = 0, sq_sum = 0;
      for (size_t i = 0; i < distances.size (); ++i)
      {
        sum += distances[i];
        sq_sum += distances[i] * distances[i];
      }

       double mean = sum / static_cast<double>(valid_distances);
       double variance = (sq_sum - sum * sum / static_cast<double>(valid_distances)) / (static_cast<double>    (valid_distances) - 1);
        double stddev = sqrt (variance);
       //getMeanStd (distances, mean, stddev);



    5、根据设定的距离阈值与distances[iii]比较 ,超出设定阈值则该点被标记为离群点,并将其移除。

     

    double distance_threshold = mean + std_mul_ * stddev;
    
      // Second pass: Classify the points on the computed distance threshold
      for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii)  // iii = input indices iterator
      {
        // Points having a too high average distance are outliers and are passed to removed indices
        // Unless negative was set, then it's the opposite condition
        if ((!negative_ && distances[iii] > distance_threshold) || (negative_ && distances[iii] <= distance_threshold))
        {
          if (extract_removed_indices_)
            (*removed_indices_)[rii++] = (*indices_)[iii];
          continue;
        }
    
        // Otherwise it was a normal point for output (inlier)
        indices[oii++] = (*indices_)[iii];
      }

        indices.resize (oii);
        removed_indices_->resize (rii);// Resize the output arrays

  • 相关阅读:
    C# switch-case
    Python学习日记之中文支持
    C++学习笔记(一)之指针
    python CGI 编程实践
    linux 配置 python3 CGI
    PowerShell入门简介
    资源整合,总有你想要的
    python 爬虫之 urllib库
    一天学一个Linux命令:第一天 ls
    DG磁盘分区提示错误
  • 原文地址:https://www.cnblogs.com/zhaobinyouth/p/6229954.html
Copyright © 2011-2022 走看看