zoukankan      html  css  js  c++  java
  • 2020-5-16CF反思

    CF凉了是显然的,不然也不会写这篇反思了。

    开题很快 (AC)(A)(B)

    到了 (C) 的时候定睛一看

    Like any unknown mathematician, Yuri has favourite numbers: (A, B, C) and (D), where (A≤B≤C≤D). Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides (x, y) and (z) exist, such that (A≤x≤B≤y≤C≤z≤D) holds?

    Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.

    The triangle is called non-degenerate if and only if its vertices are not collinear.

    这段英文还是挺好懂的,就是说一个三角形三条边分别为 (x,y,z),有如下限制

    [Ale x le B le yle C le zle D ]

    显然等于

    [A le x leq B\ B le y leq C\ C le z leq D ]

    我们知道三角形要满足 (2) 边之和大于第 (3) 边的。

    所以 (x +y >z)

    我的做法是枚举 (x+y),答案显然 (=) (x,y) 取值方案数 ( imes) (z) 的取值方案数

    对于 (x,y) 的取值方案数

    我猛然想到《组合数学》上的内容,那是不久前刚学的所以现在十分记忆犹新,这种东西,我之前只手算过,压根儿也没有想过有朝一日要用程序算出来。

    回到题目

    (x+y=k)

    [x+y=k\ Aleq xleq B\ Bleq yleq C ]

    我们去化解

    [x+y=k-A-B\ 0leq xleq B-A\ 0leq yleq C-B ]

    直接套无限多重集的多重集合的结论

    (n=k-A-B,X=B-A,Y=C-B)

    [egin{pmatrix} n+2-1 \ n end{pmatrix}+ egin{pmatrix} n-A-1+2-1 \ n-A-1 end{pmatrix}+ egin{pmatrix} n-B-1+2-1 \ n-B-1 end{pmatrix}+ egin{pmatrix} n-A-B-2+2-1 \ n-A-B-2 end{pmatrix} ]

    我们来捋一捋

    [egin{pmatrix} n+1 \ n end{pmatrix}+ egin{pmatrix} n-A \ n-A-1 end{pmatrix}+ egin{pmatrix} n-B \ n-B-1 end{pmatrix}+ egin{pmatrix} n-A-B-1 \ n-A-B-2 end{pmatrix} ]

    然后这个东西巨难调,好不容易过了 (3) 个样例自信满满地去交得到的确实 (WA) 声一片。

    这个题目的数据挺好造的,于是,我自信满满地打了个对拍,拍了几组发现了几个小问题逐一化解之后又交,又 (WA)

    时间就像哗啦啦的小溪总是在不经意间悄无声息地流走了。时间所剩无几,但我也一直在努力。

    之后突然发现这 (4) 个组合数可以直接求,于是有改了改代码,还是 (WA)

    最后时刻,我把暴力一交发现暴力也 (WA) 了,我绝望了。

    此时的我排名已来到了 (5000+) 名,(D)(E)(F)都没有碰过,但也不敢碰了,不停的死磕 (C)

    带到倒计时种那苍白而又孤独的 (00:00) 的到来,无助的我也叹了叹气。

    窗外一片黑灯瞎火,只有房间还闪烁着些许亮光,( extsf{ extbf{ extcolor{black}{w} extcolor{red}{33z8kqrqk8zzzx33}}}) 怒切 (A)(B)(C)(E),更给孤独的我的心头埋上了一片阴霾。

    风扇还在不停地转动,我为什么就不能在继续呢?

    我开始了艰难而又漫长地调题,我在静思中梳理,在思索中奋斗,在 May/16/2020 22:52 我 (AC) 了,我的心犹如初生的旭日般明亮,(AC) 的代码和比赛最后一次提交的代码仅仅有一处不同,而正是这一处让我的分数悄然无息而又微妙地发生了变化。

    回首再去看看对拍的代码

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    template<typename T>inline void read(T &FF) {
    	T RR = 1; FF = 0; char CH = getchar();
    	for (; !isdigit(CH); CH = getchar())if (CH == '-')RR = -1;
    	for (; isdigit(CH); CH = getchar())FF = (FF << 1) + (FF << 3) + (CH ^ 48);
    	FF *= RR;
    }
    template<typename T>inline void write(T FF) {
    	if (FF < 0) {
    		putchar('-');
    		FF *= -1;
    	}
    	if (FF > 9)write(FF / 10);
    	putchar(FF % 10 + 48);
    }
    template<typename T>inline void writen(T FF) {
    	write(FF);
    	puts("");
    }
    ll C(ll m, ll n) {
    	if (n == 0)return 1;
    	if (m <= 0 || n <= 0)return 0;
    	ll ans = 1;
    	for (ll i = 0; i < n; i++)ans *= m - i;
    	for (ll i = 1; i <= n; i++)ans /= i;
    	return ans;
    }
    ll work(ll i, ll l, ll r) {
    	return min(i - l + 1, r - l + 1);
    }
    ll xxx(ll a,ll b,ll c,ll d){
    	ll ans = 0;
    	for (ll i = c + 1; i <= b + c; i++) {
    		ll x = b - a, y = c - b;
    		ll m = i - a - b;
    		ll n = m + 1 - max((m - x), (ll)0) - max((m - y), (ll)0) + max((m - x - y), (ll)0);
    		ans += max(n, (ll)0) * max((ll)0, work(i - 1, c, d));
    	}
    	return ans;
    }
    ll xx(ll a,ll b,ll c,ll d){
    	ll ans=0;
    	for(int x=a;x<=b;x++){
    		for(int y=b;y<=c;y++){
    			ans+=max((ll)0,work(x+y-1,c,d));
    		}
    	}return ans;
    }
    int main() {
    	srand(time(NULL));
    	while(1){
    		ll a=1+rand()%20,b=a+rand()%20,c=b+rand()%20,d=c+rand()%20;
    		if(xx(a,b,c,d)!=xxx(a,b,c,d)){
    			cout<<a<<" "<<b<<" "<<c<<" "<<d<<endl;
    			cout<<xx(a,b,c,d)<<" "<<xxx(a,b,c,d);
    			return 0;
    		}
    	}
    	return 0;
    }
    

    悲楚也会变得快乐。

    ( extsf{ extbf{ extcolor{black}{w} extcolor{red}{33z8kqrqk8zzzx33}}}) 的做法比我的做法简单的多,但我的方法就是我的方法。

    ( extsf{ extbf{ extcolor{black}{h} extcolor{red}{zw}}}) 大佬说过:

    自己选择的路跪着也要走完

    OI比赛似乎注定是无情的,在坚强的意志品质的同时,几分理性同样是不可或缺的,(D)(E)(F) 我明天再调qwq

  • 相关阅读:
    Intellij IDEA13 创建多模块Maven项目
    oracle锁
    oracle rac负载均衡
    awk命令
    政务外网、政务专网、政务内网和互联网
    图片切换实现选中-未选中效果
    生成带logo 的二维码
    控制input为number时样式
    移动端适配的解决方法?
    input-checkbox选中及非选中样式设置
  • 原文地址:https://www.cnblogs.com/zhaohaikun/p/13829814.html
Copyright © 2011-2022 走看看