“池”这个概念好像最早是在操作系统的课上听过的,到后来出来工作的第二天组长也跟我提起“池”这个东东。它给我的感觉是某种对象的集合,如果要用的话就取出,不用的话就放回。在学多线程的时候有接触过线程池,在写《Socket 一对多通信》的时候想到了Socket连接池这回事,不过在网上谷歌了一下,发现这类的文章貌似不多,看了一下园友的博文《高性能Socket设计实现》,获益良多,下了份源码来看,虽然有一部分看不明白,而且由于个人水平跑不了那份代码,但是从中我学到了不少,至少我写的“池”有一部分是用了这位田大哥的思想。
先来分析各个类之间的结构,整个连接池里面实际上是有两个池,一个是在异步通信中可以重复利用的SocketAsyncEventArgs池(当然处于别的方面考虑,池里面并不是单纯放SocketAsyncEventArgs的实例集合),另一个是接收数据时用到的byte[]缓冲池。而这两个池是外部不能访问的,外部通过一个控制(或者叫管理)的类进行操作。继承了前两篇博文中的异步通信的思想,最底的一个类存放了一次连接的信息,包括两个SocketAsyncEventArgs实例和通信另一端的Socket实例。下面将逐部分介绍。
1 /// <summary> 2 /// 连接单元 3 /// </summary> 4 class ConnectionUnit:IDisposable 5 { 6 private string _uid;//单元的编号,默认为-1 7 private bool _state;//单元的状态,true表示使用,false表示空闲 8 private SocketAsyncEventArgs _sendArg;//专用于发送 9 private SocketAsyncEventArgs _recArg;//专用于接收 10 internal Socket client { get; set; }//客户端的socket实例 11 internal ArrayList tempArray { get; set; }//暂存已接收的数据,避免粘包用的 12 13 14 public ConnectionUnit(string UID) 15 { 16 _uid = UID; 17 tempArray = new ArrayList(); 18 } 19 20 public ConnectionUnit() : this("-1") { } 21 22 public void Dispose() 23 { 24 if (_sendArg != null) 25 _sendArg.Dispose(); 26 if (_recArg != null) 27 _recArg.Dispose(); 28 29 _sendArg = null; 30 _recArg = null; 31 } 32 }
这个与之前一篇讲异步通信的博文一样,一个Socket两个SocketAsyncEventArgs。为了取客户端的Socket方便一点,两个SocketAsyncEventArgs一个用于收,一个用于发,田大哥说这样可以实现双工。的确是这样,当初把类定成这样也是为了在收的同时也能发。以上代码删掉了把字段装成属性的那部分。
SocketAsyncEventArgsPool这个类就是上面链接单元的一个池,这个池才是整个连接池里最核心的池,也是真正意义上的池。池里面用了两个集合来存放这一堆连接单元。分别是空闲栈(freeCollecton)和在线字典集(busyCollection)。对于这样的一个池,我就认为,只要在我需要用的时候把对象取出来,顶多在去的时候给一些参数,让池帮忙把这个对象配置好,我就拿来使用,等到我用完了,把他放回池里,池就把对象还原,等待下次再使用。正体感觉这个池对外有点像个栈,取的时候就Pop,放的时候就Push,此外还提供了两个与栈不相干的的方法,根据编号获取在线的连接单元和获取所有在线连接单元的编号。
1 class SocketAsyncEventArgsPool:IDisposable 2 { 3 private Dictionary<string, ConnectionUnit> busyCollection; 4 private Stack<ConnectionUnit> freeCollecton; 5 6 internal SocketAsyncEventArgsPool() 7 { 8 busyCollection = new Dictionary<string, ConnectionUnit>(); 9 freeCollecton = new Stack<ConnectionUnit>(); 10 } 11 12 /// <summary> 13 /// 取出 14 /// </summary> 15 internal ConnectionUnit Pop(string uid) 16 { 17 ConnectionUnit unit = freeCollecton.Pop(); 18 unit.State = true; 19 unit.Uid = uid; 20 busyCollection.Add(uid, unit); 21 return unit; 22 } 23 24 /// <summary> 25 /// 放回 26 /// </summary> 27 internal void Push(ConnectionUnit unit) 28 { 29 if (!string.IsNullOrEmpty(unit.Uid) && unit.Uid != "-1") 30 busyCollection.Remove(unit.Uid); 31 unit.Uid = "-1"; 32 unit.State = false; 33 freeCollecton.Push(unit); 34 } 35 36 /// <summary> 37 /// 获取 38 /// </summary> 39 internal ConnectionUnit GetConnectionUnitByUID(string uid) 40 { 41 if (busyCollection.ContainsKey(uid)) 42 return busyCollection[uid]; 43 return null; 44 } 45 46 /// <summary> 47 /// 48 /// </summary> 49 internal string[] GetOnLineList() 50 { 51 return busyCollection.Keys.ToArray(); 52 } 53 54 public void Dispose() 55 { 56 foreach (KeyValuePair<string,ConnectionUnit> item in busyCollection) 57 item.Value.Dispose(); 58 59 busyCollection.Clear(); 60 61 while (freeCollecton.Count > 0) 62 freeCollecton.Pop().Dispose(); 63 }
BufferManager这个是专给接收的SocketAsyncEventArgs用的缓冲池,整一个连接池里面所有接收用的缓冲区都用这个BufferManager,参照田大哥的思想,现在内存里开辟一大片区域存放byte,然后给每一个接收用的SocketAsyncEventArgs分配一块。
1 class BufferManager:IDisposable 2 { 3 private byte[] buffers;//缓冲池 4 private int bufferSize;//每个单元使用的大小 5 private int allSize;//池的总大小 6 private int currentIndex;//当前可用的索引 7 private Stack<int> freeIndexs;//已使用过的空闲索引 8 9 /// <summary> 10 /// 构造缓存池 11 /// </summary> 12 /// <param name="buffersSize">池总大小</param> 13 /// <param name="defaultSize">默认单元大小</param> 14 internal BufferManager(int buffersSize, int defaultSize) 15 { 16 this.bufferSize=defaultSize; 17 this.allSize=buffersSize; 18 currentIndex=0; 19 this.buffers = new byte[allSize]; 20 freeIndexs = new Stack<int>(); 21 } 22 23 /// <summary> 24 /// 给SocketAsyncEventArgs设置缓冲区 25 /// </summary> 26 internal bool SetBuffer(SocketAsyncEventArgs e) 27 { 28 //首先看看空闲栈里有没有空闲的区域,有就使用 29 if (freeIndexs.Count > 0) 30 { 31 e.SetBuffer(buffers, freeIndexs.Pop(), bufferSize); 32 } 33 else 34 { 35 //没有就得从buffers里取,如果buffers用光了当然取不了 36 if ((allSize - currentIndex) < bufferSize) return false; 37 e.SetBuffer(buffers, currentIndex, bufferSize); 38 currentIndex += bufferSize; 39 } 40 return true; 41 } 42 43 /// <summary> 44 /// 释放SocketAsyncEventArgs的缓冲区 45 /// </summary> 46 /// <param name="e"></param> 47 internal void FreeBuffer(SocketAsyncEventArgs e) 48 { 49 //把索引放到空闲索引栈里面,供下次取的时候重复利用 50 freeIndexs.Push(e.Offset); 51 //同时清空这部分区域的数据免得上次使用时遗留的数据会掺 52 //和到下次读取的数据中 53 for (int i = e.Offset; i < e.Offset + bufferSize; i++) 54 { 55 if (buffers[i] == 0) break; 56 buffers[i] = 0; 57 } 58 e.SetBuffer(null, 0, 0); 59 } 60 61 public void Dispose() 62 { 63 buffers = null; 64 freeIndexs = null; 65 } 66 }
其实上面两个池都是很大程度参照了《高性能Socket设计实现》中的内容。下面这个SocketPoolController是对外的类,这个类的设计参照的就没那么多了。而对于一个Socket通信(服务端的)来说,无非都是三件事,接受连接,接收数据,发送数据。这三件事我再操作类里面是这样做的
接受连接:接受再运行池的时候就开始了,异步循环地接受,执行一次异步接受就阻塞,等到接受完成才被唤醒。
1 /// <summary> 2 /// 异步Accept客户端的连接 3 /// </summary> 4 void MyAsyncAccept() 5 { 6 //这里使用Action的方式异步循环接受客户端的连接 7 //模仿同事的做法没开线程,不知这种方式是好是坏 8 Action callback = new Action(delegate() 9 { 10 while (true) 11 { 12 //每次接受都要新开一个SocketAsyncEventArgs,否则会报错 13 //其实我也想重复利用的 14 SocketAsyncEventArgs e = new SocketAsyncEventArgs(); 15 e.Completed += new EventHandler<SocketAsyncEventArgs>(Accept_Completed); 16 17 acceptLock.Reset(); 18 server.AcceptAsync(e); 19 //在异步接受完成之前阻塞当前线程 20 acceptLock.WaitOne(); 21 } 22 }); 23 callback.BeginInvoke(null, null); 24 } 25 26 void Accept_Completed(object sender, SocketAsyncEventArgs e) 27 { 28 Socket client = e.AcceptSocket; 29 try 30 { 31 if (client.Connected) 32 { 33 IPEndPoint point = client.RemoteEndPoint as IPEndPoint; 34 string uid = point.Address + ":" + point.Port; 35 ConnectionUnit unit = pool.Pop(uid); 36 unit.client = client; 37 unit.State = true; 38 unit.Uid = uid; 39 unit.RecArg.UserToken = unit; 40 unit.SendArg.UserToken = unit; 41 buffer.SetBuffer(unit.RecArg); 42 43 //在接受成功之后就开始接收数据了 44 client.ReceiveAsync(unit.RecArg); 45 //设置并发限制信号和增加当前连接数 46 semaphoreAccept.WaitOne(); 47 Interlocked.Increment(ref currentConnect); 48 49 if (OnAccept != null) OnAccept(uid); 50 } 51 else if (client != null) 52 { 53 client.Close(); 54 client.Dispose(); 55 client = null; 56 } 57 } 58 catch (Exception ex) { Console.WriteLine(ex.ToString()); } 59 //设置Accept信号,以便下次Accept的执行 60 acceptLock.Set(); 61 e.Dispose(); 62 }
接收消息:在异步接受成功的时候开始接收,每次接收完成之后就进行下一次接收,直到客户端断开连接才终止。
1 void RecArg_Completed(object sender, SocketAsyncEventArgs e) 2 { 3 Socket client = sender as Socket; 4 ConnectionUnit unit = e.UserToken as ConnectionUnit; 5 //这里大致与上一篇异步通信的一样,只是对缓冲区的处理有一点差异 6 if (e.SocketError == SocketError.Success) 7 { 8 int rec = e.BytesTransferred; 9 if (rec == 0) 10 { 11 CloseSocket(unit); 12 return; 13 } 14 if (client.Available > 0) 15 { 16 unit.tempArray.AddRange(e.Buffer); 17 buffer.FreeBuffer(unit.RecArg); 18 buffer.SetBuffer(unit.RecArg); 19 client.SendAsync(unit.RecArg); 20 return; 21 } 22 byte[] data = e.Buffer; 23 int len = rec; 24 int offset = e.Offset; 25 if (unit.tempArray.Count != 0) 26 { 27 foreach (byte item in data) 28 { 29 if (item == 0) break; 30 unit.tempArray.Add(item); 31 } 32 data = unit.tempArray.ToArray(typeof(byte)) as byte[]; 33 rec = data.Length; 34 offset = 0; 35 unit.tempArray.Clear(); 36 } 37 38 string dataStr = Encoding.ASCII.GetString(data,offset,len); 39 if (OnReceive != null) 40 OnReceive(unit.Uid, dataStr); 41 42 if (!unit.State) return; 43 buffer.FreeBuffer(e); 44 buffer.SetBuffer(e); 45 client.ReceiveAsync(e); 46 } 47 //这里还多个了一个关闭当前连接 48 else 49 { 50 CloseSocket(unit); 51 } 52 } 53 54 /// <summary> 55 /// 关闭一个连接单元 56 /// </summary> 57 private void CloseSocket( ConnectionUnit unit ) 58 { 59 //关闭并释放客户端socket的字眼 60 if (unit.client != null) 61 { 62 unit.client.Shutdown(SocketShutdown.Both); 63 unit.client.Dispose(); 64 unit.client = null; 65 } 66 //Console.WriteLine(unit.Uid+" disconnect "); 67 //把连接放回连接池 68 pool.Push(unit); 69 //释放并发信号 70 semaphoreAccept.Release(); 71 //减少当前连接数 72 Interlocked.Decrement(ref currentConnect); 73 }
发送消息:外放方法,在需要的时候自行调用方法发送。
1 /// <summary> 2 /// 发送消息 3 /// </summary> 4 /// <param name="uid"></param> 5 /// <param name="message"></param> 6 public void SendMessage(string uid, string message) 7 { 8 sendLock.Reset(); 9 ConnectionUnit unit=pool.GetConnectionUnitByUID(uid); 10 //如果获取不了连接单元就不发送了, 11 if (unit == null) 12 { 13 if(OnSend!=null) OnSend(uid,"100"); 14 sendLock.Set(); 15 return; 16 } 17 byte[] datas = Encoding.ASCII.GetBytes(message); 18 unit.SendArg.SetBuffer(datas, 0, datas.Length); 19 unit.client.SendAsync(unit.SendArg); 20 //阻塞当前线程,等到发送完成才释放 21 sendLock.WaitOne(); 22 } 23 24 void SendArg_Completed(object sender, SocketAsyncEventArgs e) 25 { 26 Socket client = sender as Socket; 27 ConnectionUnit unit = e.UserToken as ConnectionUnit; 28 //这里的消息码有三个,2字头的是成功的,1字头是不成功的 29 //101是未知错误,100是客户端不在线 30 if (e.SocketError == SocketError.Success) 31 if (OnSend != null) OnSend(unit.Uid, "200"); 32 else if (OnSend != null) OnSend(unit.Uid, "101"); 33 //释放信号,以便下次发送消息执行 34 sendLock.Set(); 35 }
下面则是类里面的一些字段信息和构造函数
1 /// <summary> 2 /// 初始化池的互斥体 3 /// </summary> 4 private Mutex mutex = new Mutex(); 5 6 /// <summary> 7 /// Accept限制信号 8 /// </summary> 9 private Semaphore semaphoreAccept; 10 11 /// <summary> 12 /// Accept信号 13 /// </summary> 14 private static ManualResetEvent acceptLock = new ManualResetEvent(false); 15 16 /// <summary> 17 /// Send信号 18 /// </summary> 19 private static ManualResetEvent sendLock = new ManualResetEvent(false); 20 21 /// <summary> 22 /// 最大并发数(连接数) 23 /// </summary> 24 private int maxConnect; 25 26 /// <summary> 27 /// 当前连接数(并发数) 28 /// </summary> 29 private int currentConnect; 30 31 /// <summary> 32 /// 缓冲池 33 /// </summary> 34 private BufferManager buffer; 35 36 /// <summary> 37 /// SocketasyncEventArgs池 38 /// </summary> 39 private SocketAsyncEventArgsPool pool; 40 41 /// <summary> 42 /// 服务端Socket 43 /// </summary> 44 private Socket server; 45 46 /// <summary> 47 /// 完成接受的委托 48 /// </summary> 49 public delegate void AcceptHandler(string uid); 50 51 /// <summary> 52 /// 完成发送的委托 53 /// </summary> 54 public delegate void SendHandler(string uid, string result); 55 56 /// <summary> 57 /// 完成接收的委托 58 /// </summary> 59 public delegate void RecevieHandler(string uid, string data); 60 61 /// <summary> 62 /// 完成接受事件 63 /// </summary> 64 public event AcceptHandler OnAccept; 65 66 /// <summary> 67 /// 完成发送事件 68 /// </summary> 69 public event SendHandler OnSend; 70 71 /// <summary> 72 /// 完成接收事件 73 /// </summary> 74 public event RecevieHandler OnReceive; 75 76 /// <summary> 77 /// 构造函数 78 /// </summary> 79 /// <param name="buffersize">单元缓冲区大小</param> 80 /// <param name="maxCount">并发总数</param> 81 public SocketPoolController(int buffersize, int maxCount) 82 { 83 buffer = new BufferManager(buffersize * maxCount,buffersize); 84 this.currentConnect = 0; 85 this.maxConnect = maxCount; 86 this.currentConnect = 0; 87 this.pool = new SocketAsyncEventArgsPool(); 88 //设置并发数信号,经试验过是并发数-1才对 89 this.semaphoreAccept = new Semaphore(maxCount-1, maxCount-1); 90 InitPool(); 91 }
构造函数里用到的方法
1 /// <summary> 2 /// 初始化SocketAsyncEventArgs池 3 /// 这里主要是给空闲栈填充足够的实例 4 /// </summary> 5 private void InitPool() 6 { 7 ConnectionUnit unit = null; 8 for (int i = 0; i < maxConnect; i++) 9 { 10 unit = new ConnectionUnit(); 11 unit.Uid = "-1"; 12 unit.RecArg = new SocketAsyncEventArgs(); 13 unit.RecArg.Completed += new EventHandler<SocketAsyncEventArgs>(RecArg_Completed); 14 unit.SendArg = new SocketAsyncEventArgs(); 15 unit.SendArg.Completed += new EventHandler<SocketAsyncEventArgs>(SendArg_Completed); 16 this.pool.Push(unit); 17 } 18 }
其他外放专门控制池的方法
1 /// <summary> 2 /// 启动池 3 /// </summary> 4 /// <param name="ipAddress">服务端的IP</param> 5 /// <param name="port">端口</param> 6 public void RunPool(string ipAddress, int port) 7 { 8 IPEndPoint endpoint = new IPEndPoint(IPAddress.Parse(ipAddress), port); 9 server = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); 10 server.Bind(endpoint); 11 server.Listen(100); 12 13 //调用方法异步Accept客户端的连接 14 MyAsyncAccept(); 15 //设置信号,防止再池在已经启动的情况下再次启动 16 mutex.WaitOne(); 17 } 18 19 /// <summary> 20 /// 停止池 21 /// </summary> 22 public void StopPool() 23 { 24 //把服务端的socket关了 25 if (server != null) 26 server.Close(); 27 //释放互斥信号,等待下次启动 28 mutex.ReleaseMutex(); 29 //释放资源 30 Dispose(); 31 }
要把这个操作类与现实的事物类比的话,这个与我们平常跟某个或一堆人聊天时差不多,别人说的东西,不用你自己控制你都会听得到(排除带上耳机,塞住耳朵这种极端的情况),所以接收消息那个方法就不需要了,而你要说什么这个要靠个人控制,而事件那些也好类比,OnAccept就相当于某人加入到这次聊天中你会做些什么(say hello 或者无视),OnRecevie就听到别人说什么自己有什么反应,OnSend就自己说完话之后有什么反应(有时候发现说错了会纠正,有时觉得自己说得好笑的也笑一场诸如此类)。
在使用的时候可以这样子
1 SocketPoolController pool; 2 pool = new SocketPoolController(32 * 1024, 1000); 3 pool.OnReceive += new SocketPoolController.RecevieHandler(pool_OnReceive); 4 pool.OnSend += new SocketPoolController.SendHandler(pool_OnSend); 5 pool.OnAccept += new SocketPoolController.AcceptHandler(pool_OnAccept); 6 pool.RunPool("127.0.0.1", 8081); 7 Console.WriteLine("Pool has run press any key to stop..."); 8 Console.ReadKey(); 9 pool.StopPool(); 10 Console.WriteLine("Pool has stop press any key to exit..."); 11 Console.ReadLine();
在池里面有一部分地方看似跟用同步的差不多,像接受客户端的连接,发送消息这些地方。可是用这种异步,万一客户端突然断开连接也不会有同步那样马上抛异常。还有一点的是在这份代码里面缺少了对异常的捕捉,有一部分错误我在测试的过程中设了判断避开了。以前跟某只猫提过Socket编程会与多线程一起使用,我也觉得是这样,在之前一篇博文 《Socket一对多通信》里我也用到线程,后来的异步通信也是有线程的,不过不是.net framework自行创建的。看了田大哥的博文给我的另一个收获是信号量的使用,在以前不懂得使用信号量,只会设置一大堆标识状态的布尔值或整形的变量来计数判断。田大哥的博文介绍的时高性能的Socket,而我的这个应该性能不会高到哪里去。上面有什么说错的请各位指出,有什么说漏的,请各位提点,多多指导。谢谢!