zoukankan      html  css  js  c++  java
  • 深度学习练习(一)

    (一)画出三点图实例(polt.py)

    import matplotlib.pyplot as plt                #导入matplotlib模块里面的pyplot类,并取一个别名为plt

    dataset = [[1.2, 1.1], [2.4, 3.5], [4.1, 3.2], [3.4, 2.8], [5, 5.4]]   #创建矩阵数据并赋值为dataset

    x = [row[0] for row in dataset]                #循环dataset里面第一列并赋值为x

    y = [row[1] for row in dataset]                #循环dataset里面第二列并赋值为y

    plt.axis([0, 6, 0, 6])                     #通过plt里面的axis函数画一个6-6的图

    plt.plot(x, y, 'bs')                      #以x轴和y轴的序列为坐标绘制图,bs表示格式为蓝色方块,bo表示蓝色圆点,b-蓝色的线条-,g^表示的是绿色三角形

    plt.grid()                         #grid方法表示显示网格线

    plt.show()                          #show()用于在屏幕上显示前面绘制的图片

    plt.savefig('scatter.png')                    #保存的图片名称

    (二)计算回归系数

    dataset = [[1.2, 1.1], [2.4, 3.5], [4.1, 3.2], [3.4, 2.8], [5, 5.4]]
    x = [row[0] for row in dataset]
    y = [row[1] for row in dataset]

    def mean(values):
    return sum(values) / float(len(values))

    def covariance(x, mean_x,mean_y):
    covar = 0.0
    for i in range(len(x)):
    covar += (x[i] - mean_x) * (y[i] - mean_y)
    return covar

    def variance(values, mean):
    return sum([(x-mean) **2 for x in values])

    def coefficients(dataset):
    x_mean, y_mean = mean(x), mean(y)
    w1 = covariance(x, x_mean, y_mean) / variance(x, x_mean)
    w0 = y_mean - w1 * x_mean
    return w0, w1

    w0, w1 = coefficients(dataset)
    print('回归系数分别为: w0=%.3f, w1=%.3f' % (w0, w1))

    (三)实现标准简单线性回归

    from math import sqrt
    dataset = [[1.2, 1.1], [2.4, 3.5], [4.1, 3.2], [3.4, 2.8], [5, 5.4]]

    def mean(values):
    return sum(values) / float(len(values))

    def covariance(x, mean_x, y, mean_y):
    covar = 0.0
    for i in range(len(x)):
    covar += (x[i] - mean_x) * (y[i] - mean_y)
    return covar

    def variance(values, mean):
    return sum([(x-mean) ** 2 for x in values])

    def coefficients(dataset):
    x = [row[0] for row in dataset]
    y = [row[1] for row in dataset]
    x_mean, y_mean = mean(x), mean(y)
    w1 = covariance(x, x_mean, y, y_mean) / variance(x, x_mean)
    w0 = y_mean - w1 * x_mean
    return (w0, w1)

    def rmse_metric(actual, predicted):
    sum_error = 0.0
    for i in range(len(actual)):
    prediction_error = predicted[i] - actual[i]
    sum_error += (prediction_error ** 2)
    mean_error = sum_error / float(len(actual))
    return sqrt(mean_error)

    def simple_linear_regression(train, test):
    predictions = list()
    w0, w1 = coefficients(train)
    for row in test:
    y_model = w1 * row[0] + w0
    predictions.append(y_model)
    return predictions

    def evaluate_algorithm(dataset, algorithm):
    test_set = list()
    for row in dataset:
    row_copy = list(row)
    row_copy[-1] = None
    test_set.append(row_copy)
    predicted = algorithm(dataset, test_set)
    for val in predicted:
    print('%.3f ' %(val))

    actual = [row[-1] for row in dataset]
    rmse = rmse_metric(actual, predicted)
    return rmse

    rmse = evaluate_algorithm(dataset, simple_linear_regression)
    print('RMSE: %.3f' % (rmse))

     (四)生成山鸢尾可视化图

    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np

    df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header = None)
    X=df.iloc[0:150,[0,2]].values
    plt.scatter(X[0:50,0],X[:50,1],color='blue',marker='x',label='setosa')
    plt.scatter(X[50:100,0],X[50:100,1],color='red',marker='o',label='versicolor')
    plt.scatter(X[100:150,0],X[100:150,1],color='green',marker='*',label='virginica')
    plt.xlabel('petal width')
    plt.ylabel('sepal length')
    plt.legend(loc='upper left')
    plt.show()

  • 相关阅读:
    2018-2019-1 20165318 20165322 20165326 实验四 外设驱动程序设计
    2018-2019-1 20165318 实验三 实时系统
    2018-2019-1 20165318《信息安全系统设计基础》第九周课上测试
    2018-2019-1 20165318 20165322 20165326 实验二 固件程序设计
    2018-2019-1 20165318《信息安全系统设计基础》第八周课上测试
    2018-2019-1 20165318 20165322 20165326 实验一 开发环境的熟悉
    2018-2019-1 20165318《信息安全系统设计基础》第六周课上测试
    20165318 缓冲区溢出漏洞实验
    20165318 2017-2018-2《Java程序设计》课程总结
    缓冲区溢出漏洞实验
  • 原文地址:https://www.cnblogs.com/zhaop8078/p/9529205.html
Copyright © 2011-2022 走看看