zoukankan      html  css  js  c++  java
  • 机器学习-朴素贝叶斯算法

    一、介绍

    二、编程实战

    1、贝努利朴素贝叶斯make_blobs数据集的分类

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.datasets import make_blobs
    from sklearn.naive_bayes import BernoulliNB
    from sklearn.model_selection import train_test_split

    X, y = make_blobs(n_samples=500, centers=5, random_state=8)
    X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=8)
    nb = BernoulliNB()
    nb.fit(X_train,y_train)
    x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
    y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
    z = nb.predict(np.c_[(xx.ravel(), yy.ravel())]).reshape(xx.shape)
    plt.pcolormesh(xx, yy, z, cmap=plt.cm.Pastel1)
    plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=plt.cm.cool, edgecolors='k')
    plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=plt.cm.cool, marker='*')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.show()

    2、高斯朴素贝叶斯make_blobs数据集的分类

    from sklearn.naive_bayes import GaussianNB
    gnb = GaussianNB()
    gnb.fit(X_train, y_train)
    z = gnb.predict(np.c_[(xx.ravel(),yy.ravel())]).reshape(xx.shape)
    plt.pcolormesh(xx,yy,z,cmap=plt.cm.Pastel1)
    plt.scatter(X_train[:,0],X_train[:,1],c=y_train,cmap=plt.cm.cool,edgecolor='k')
    plt.scatter(X_test[:,0],X_test[:,1],c=y_test,cmap=plt.cm.cool,marker='*',edgecolor='k')
    plt.xlim(xx.min(),xx.max())
    plt.ylim(yy.min(),yy.max())
    plt.show()
    print('模型得分: {:.3f}'.format(gnb.score(X_test, y_test)))

    3、高斯朴素贝叶斯的学习曲线

    from sklearn.model_selection import learning_curve
    from sklearn.model_selection import ShuffleSplit

    def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
    n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
    plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
    estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    plt.grid()
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")
    plt.legend(loc="lower right")
    return plt

    title = "Learning Curves (Naive Bayes)"
    cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
    estimator = GaussianNB()
    plot_learning_curve(estimator, title, X, y, ylim=(0.9, 1.01), cv=cv, n_jobs=4)
    plt.show()

  • 相关阅读:
    aspcms产品详情页调取相关产品
    构造函数中返回一个对象对结果有什么影响
    跨域的几种方法及案例代码
    localStorage兼容方案
    H5 拖放事件详解
    由作用域安全的构造函数想到的
    valueOf和toString的区别
    网页布局--自适应
    【MongoDB系列】简介、安装、基本操作命令
    【JavaWeb】之Servlet
  • 原文地址:https://www.cnblogs.com/zhaop8078/p/9784840.html
Copyright © 2011-2022 走看看