zoukankan      html  css  js  c++  java
  • POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 37662   Accepted: 12836

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5

    1 2 20
    3 4 20
    4 5 20
    2 3 30

    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1.

     SPFA:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <queue>
     4 #include <vector>
     5 #include <cstring>
     6 #include <algorithm>
     7 
     8 using namespace std;
     9 const int INF = 10000000;
    10 const int MAX = 1000 + 10;
    11 int t,n;
    12 struct point
    13 {
    14     int e,w;
    15 };
    16 vector<point> g[MAX];
    17 int dist[MAX];
    18 void spfa(int v)
    19 {
    20     for(int i = 0; i <= n; i++)
    21     {
    22         dist[i] = INF;
    23     }
    24     dist[v] = 0;
    25     queue<int> que;
    26     que.push(v);
    27     while(que.size())
    28     {
    29         int x = que.front();
    30         que.pop();
    31         int len = g[x].size();
    32         for(int i = 0; i < len; i++)
    33         {
    34             int y = g[x][i].e;
    35             if(dist[y] > dist[x] + g[x][i].w)
    36             {
    37                 dist[y] = dist[x] + g[x][i].w;
    38                 que.push(y);
    39             }
    40         }
    41     }
    42 }
    43 int main()
    44 {
    45     while(scanf("%d%d", &t, &n) != EOF)
    46     {
    47         for(int i = 0; i < MAX; i++)
    48             g[i].clear();
    49 
    50         while(t--)
    51         {
    52             int s,e,w;
    53             point temp;
    54             scanf("%d%d%d", &s,&e,&w);
    55             temp.w = w;
    56             temp.e = e;
    57             g[s].push_back(temp);
    58             temp.e = s;
    59             g[e].push_back(temp);
    60         }
    61 
    62         spfa(n);
    63         printf("%d
    ",dist[1]);
    64     }
    65 
    66     return 0;
    67 }
    SPFA

    Dijkstra

    注意重边问题

     1 #include <cstring>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <string.h>
     5 using namespace std;
     6 const int INF = 10000000;
     7 const int MAX = 1000 + 10;
     8 int g[MAX][MAX],dist[MAX],vis[MAX];
     9 int t,n;
    10 void Dijkstra()
    11 {
    12     for(int i = 1; i <= n; i++)
    13         dist[i] = INF;
    14     memset(vis,0,sizeof(vis));
    15     dist[n] = 0;
    16     vis[n] = 0;
    17     int pos = n;
    18     for(int i = 1; i < n; i++)
    19     {
    20         int minn = INF;
    21         for(int j = 1; j <= n; j++)
    22         {
    23             if(vis[j] == 0 && dist[j] < minn)
    24             {
    25                 minn = dist[j];
    26                 pos = j;
    27             }
    28         }
    29         vis[pos] = 1;
    30         for(int j = 1; j <= n; j ++)
    31         {
    32             if(vis[j] == 0 && dist[j] > dist[pos] + g[pos][j])
    33                 dist[j] = dist[pos] + g[pos][j];
    34         }
    35     }
    36 }
    37 int main()
    38 {
    39     while(scanf("%d%d",&t,&n) != EOF)
    40     {
    41         int s,e,w;
    42         for(int i = 1; i <= n; i++)
    43         {
    44             for(int j = 1; j <= n; j++)
    45             {
    46                 g[i][j] = INF;
    47             }
    48         }
    49         for(int i = 0; i < t; i++)
    50         {
    51             scanf("%d%d%d",&s,&e,&w);
    52             if(g[s][e] > w)
    53                 g[s][e] = g[e][s] = w;
    54         }
    55         Dijkstra();
    56         printf("%d
    ",dist[1]);
    57     }
    58 
    59 }
    View Code

    Ballem_ford

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <vector>
     4 #include <algorithm>
     5 #include <cstdio>
     6 #include <iostream>
     7 using namespace std;
     8 const int INF = 1000000000;
     9 const int MAX = 1000 + 10;
    10 int n,t;
    11 struct point
    12 {
    13     int s,t,w;
    14 };
    15 vector<point> g;
    16 int dist[MAX];
    17 void Ballem_ford(int v)
    18 {
    19     for(int i = 1; i <= n; i++)
    20         dist[i] = INF;
    21     dist[v] = 0;
    22     for(int j = 1; j < n; j++)
    23     {
    24         int len = g.size();
    25         int flag = 0;
    26         for(int i = 0; i < len; i++)
    27         {
    28              int s = g[i].s;
    29              int t = g[i].t;
    30              int w = g[i].w;
    31              if(dist[t] > dist[s] + w)
    32              {
    33                  dist[t] = dist[s] + w;
    34                  flag = 1;
    35              }
    36         }
    37         if(flag == 0)   //加个flag 优化一下 
    38             break;
    39     }
    40 }
    41 int main()
    42 {
    43     while(scanf("%d%d", &t, &n) != EOF)
    44     {
    45         g.clear();
    46         int s,e,w;
    47         point temp;
    48         for(int i = 0; i < t; i++)
    49         {
    50             scanf("%d%d%d", &s,&e,&w);
    51             temp.w = w;
    52             temp.t = e;
    53             temp.s = s;
    54             g.push_back(temp);
    55             temp.t = s;
    56             temp.s = e;
    57             g.push_back(temp);
    58         }
    59         Ballem_ford(n);
    60         printf("%d
    ",dist[1]);
    61     }
    62 }
    View Code
  • 相关阅读:
    MySQL数据库有哪些安全相关的参数需要修改?
    Python PEP-8编码风格指南中文版
    linux系统/var/log目录下的信息详解
    mcelog用法详解
    timeout 命令
    x86服务器MCE(Machine Check Exception)问题
    IPv6简介
    MySQL innodb统计信息
    memory 监控 mysql vs percona vs maria
    oracle 压力测试工具benchmarksql
  • 原文地址:https://www.cnblogs.com/zhaopAC/p/4992776.html
Copyright © 2011-2022 走看看