zoukankan      html  css  js  c++  java
  • POJ3070Fibonacci(矩阵快速幂+高效)

    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 11587   Accepted: 8229

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    题意:就是求斐波那契数列,只是有点大,递推也会超时,矩阵快速幂0ms,搞定;

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 const int N = 2;
     7 const int mod = 10000;
     8 struct Mat
     9 {
    10     int mat[2][2];
    11 };
    12 Mat operator * (Mat a, Mat b)
    13 {
    14     Mat c;
    15     memset(c.mat, 0, sizeof(c.mat));
    16     for(int k = 0; k < N; k++)
    17     {
    18         for(int i = 0; i < N; i++)
    19         {
    20             for(int j = 0; j < N; j++)
    21             {
    22                 c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j] % mod) % mod;
    23             }
    24         }
    25     }
    26     return c;
    27 }
    28 Mat operator ^ (Mat a, int k)
    29 {
    30     Mat c;
    31     for(int i = 0; i < N; i++)
    32         for(int j = 0; j < N; j++)
    33             c.mat[i][j] = (i == j);
    34     while(k)
    35     {
    36         if(k & 1)
    37             c = c * a;
    38         a = a * a;
    39         k >>= 1;
    40     }
    41     return c;
    42 }
    43 int main()
    44 {
    45     int n;
    46     while(scanf("%d", &n) != EOF)
    47     {
    48         if(n == -1)
    49             break;
    50         if(n == 0)
    51             printf("0
    ");
    52         else if(n == 1)
    53             printf("1
    ");
    54         else
    55         {
    56             Mat a;
    57             a.mat[0][0] = 1;
    58             a.mat[0][1] = 1;
    59             a.mat[1][0] = 1;
    60             a.mat[1][1] = 0;
    61             a = a ^ (n - 1);
    62             printf("%d
    ",a.mat[0][0]);
    63         }
    64     }
    65 
    66     return 0;
    67 }
    View Code
  • 相关阅读:
    JQuery源码解析(十一)
    Oracle帮助类
    JQuery正则验证
    MVC的过滤器
    JQuery源码解析(十)
    JavaScript封装的几种方式
    ps小技巧
    Fragment 的用法小技巧
    onCreateOptionsMenu 和 onPrepareOptionsMenu 的区别
    Axure 注册码
  • 原文地址:https://www.cnblogs.com/zhaopAC/p/5073684.html
Copyright © 2011-2022 走看看