zoukankan      html  css  js  c++  java
  • zoj 3946 Highway Project(最短路 + 优先队列)

    Highway Project

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Edward, the emperor of the Marjar Empire, wants to build some bidirectional highways so that he can reach other cities from the capital as fast as possible. Thus, he proposed the highway project.

    The Marjar Empire has N cities (including the capital), indexed from 0 to N - 1 (the capital is 0) and there are M highways can be built. Building the i-th highway costs Ci dollars. It takes Di minutes to travel between city Xi and Yi on the i-th highway.

    Edward wants to find a construction plan with minimal total time needed to reach other cities from the capital, i.e. the sum of minimal time needed to travel from the capital to city i (1 ≤i ≤ N). Among all feasible plans, Edward wants to select the plan with minimal cost. Please help him to finish this task.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first contains two integers NM (1 ≤ NM ≤ 105).

    Then followed by M lines, each line contains four integers XiYiDiCi (0 ≤ XiYi < N, 0 < DiCi < 105).

    Output

    For each test case, output two integers indicating the minimal total time and the minimal cost for the highway project when the total time is minimized.

    Sample Input

    2
    4 5
    0 3 1 1
    0 1 1 1
    0 2 10 10
    2 1 1 1
    2 3 1 2
    4 5
    0 3 1 1
    0 1 1 1
    0 2 10 10
    2 1 2 1
    2 3 1 2
    

    Sample Output

    4 3
    4 4
    

     题意:从0点开始到各点距离最小,在距离最小情况下还要花费最少,做这题的时候题目没搞明白,

    优先队列维护,

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <algorithm>
      4 #include <queue>
      5 #include <cstring>
      6 using namespace std;
      7 typedef long long LL;
      8 const LL INF = ((LL) 1) << 61;
      9 const int Max = 1e5 + 10;
     10 struct Edge
     11 {
     12     int v, d, c;
     13     int Next;
     14 };
     15 struct Node
     16 {
     17     int u;
     18     LL d, c;
     19     friend bool operator<(const Node & a, const Node & b)
     20     {
     21         if (a.d == b.d)
     22             return a.c > b.c;
     23         return a.d > b.d;
     24     }
     25 };
     26 Node node[Max];
     27 Edge edge[Max * 2];
     28 int head[Max];
     29 int vis[Max];
     30 int n, m, tot;
     31 void addEdge(int u, int v, int d, int c)
     32 {
     33     edge[tot].v = v; edge[tot].d = d; edge[tot].c = c;
     34     edge[tot].Next = head[u];
     35     head[u] = tot++;
     36 
     37     edge[tot].v = u; edge[tot].d = d; edge[tot].c = c;
     38     edge[tot].Next = head[v];
     39     head[v] = tot++;
     40 }
     41 
     42 void dijstra()
     43 {
     44     for (int i = 0; i <= n; i++)
     45     {
     46         node[i].u = i;
     47         node[i].d = INF;
     48         node[i].c = INF;
     49     }
     50     priority_queue<Node> que;
     51     node[0].c = node[0].d = 0;
     52     que.push(node[0]);
     53     memset(vis, 0, sizeof(vis));
     54 
     55     while (!que.empty())
     56     {
     57         Node temp = que.top();
     58         que.pop();
     59         int u = temp.u;
     60         if (vis[u])
     61             continue;
     62         vis[u] = 1;
     63         for (int i = head[u]; i != -1; i = edge[i].Next)
     64         {
     65             if (vis[ edge[i].v ])
     66                 continue;
     67             if (node[ edge[i].v ].d > node[ u ].d + edge[i].d)
     68             {
     69                 node[ edge[i].v ].d = node[ u ].d + edge[i].d;
     70                 node[ edge[i].v ].c = edge[i].c;
     71                 que.push(node[ edge[i].v ]);
     72             }
     73             else if (node[ edge[i].v ].d == node[ u ].d + edge[i].d && node[ edge[i].v ].c > edge[i].c)
     74             {
     75                 node[ edge[i].v ].c = edge[i].c;
     76                 que.push(node[ edge[i].v ]);
     77             }
     78         }
     79     }
     80 }
     81 int main()
     82 {
     83     int t;
     84     scanf("%d", &t);
     85     while (t--)
     86     {
     87         scanf("%d%d", &n, &m);
     88         memset(head, -1, sizeof(head));
     89         int u, v, d, c;
     90         tot = 0;
     91         for (int i = 1; i <= m; i++)
     92         {
     93             scanf("%d%d%d%d", &u, &v, &d, &c);
     94             addEdge(u, v, d, c);
     95         }
     96         dijstra();
     97         LL sum_d = 0, sum_c = 0;
     98         for (int i = 1; i < n; i++)
     99         {
    100             sum_d += node[i].d;
    101             sum_c += node[i].c;
    102         }
    103         printf("%lld %lld
    ", sum_d, sum_c);
    104     }
    105     return 0;
    106 }
    View Code
  • 相关阅读:
    Js学习第十天----函数
    IOS Object和javaScript相互调用
    hadoop2.7.1 nutch2.3 二次开发windows环境
    交叉熵代价函数(作用及公式推导)
    推断dxf文件的版本号
    mahout in Action2.2-聚类介绍-K-means聚类算法
    Xcode 技巧充电篇
    Android 推断SD卡是否存在及容量查询
    springmvc学习笔记(12)-springmvc注解开发之包装类型參数绑定
    pip简单配置
  • 原文地址:https://www.cnblogs.com/zhaopAC/p/5432494.html
Copyright © 2011-2022 走看看