Description
Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations:
Operation 1: AND opn L R
Here opn, L and R are integers.
For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation).
Operation 2: OR opn L R
Here opn, L and R are integers.
For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation).
Operation 3: XOR opn L R
Here opn, L and R are integers.
For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation).
Operation 4: SUM L R
We want to know the result of A[L]+A[L+1]+...+A[R].
Now can you solve this easy problem?
Input
The first line of the input contains an integer T, indicating the number of test cases. (T≤100)
Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.
Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n).
Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)
Output
Sample Input
Sample Output
Hint
A = [1 2 4 7]
SUM 0 2, result=1+2+4=7;
XOR 5 0 0, A=[4 2 4 7];
OR 6 0 3, A=[6 6 6 7];
SUM 0 2, result=6+6+6=18.
大神说,经过若干次的操作就会出现很多相同的,然后懒惰标记就用来记做 这个区间又没用相同的
1 #include <iostream> 2 #include <algorithm> 3 #include <cstdio> 4 #include <cstring> 5 using namespace std; 6 typedef long long LL; 7 const int Max = 1000000 + 10; 8 int n, m; 9 struct Node 10 { 11 int l, r; 12 int num; 13 }; 14 Node node[Max * 4]; 15 int A[Max]; 16 void buildtree(int l, int r, int k) 17 { 18 node[k].l = l; 19 node[k].r = r; 20 node[k].num = -1; 21 if (l == r) 22 { 23 node[k].num = A[l]; 24 return; 25 } 26 int mid = (l + r) / 2; 27 buildtree(l, mid, k * 2); 28 buildtree(mid + 1, r, k * 2 + 1); 29 if (node[k * 2].num >= 0 && node[k * 2].num == node[k * 2 + 1].num) // 如果左边区间和右边区间 num 相同,就要更改父节点 30 { 31 node[k].num = node[k * 2].num; 32 } 33 } 34 int getopt(int num, int opn, int opt) 35 { 36 if (opt == 1) 37 return opn & num; 38 if (opt == 2) 39 return opn | num; 40 if (opt == 3) 41 return (opn ^ num); 42 return 0; 43 } 44 void update(int l, int r, int k, int opn, int opt) 45 { 46 if (node[k].l == l && node[k].r == r && node[k].num >= 0) 47 { 48 // 区间【l, r】上的数是相同的,只需改一次就ok了 49 node[k].num = getopt(node[k].num, opn, opt); 50 return; 51 } 52 // 不相同的话就继续往左右两边改 53 if (node[k].num >= 0) // 在改的过程中发现该点标记过,分给子节点,去掉自己的标记 54 { 55 node[k * 2].num = node[k * 2 + 1].num = node[k].num; 56 node[k].num = -1; 57 } 58 int mid = (node[k].l + node[k].r) / 2; 59 if (r <= mid) 60 update(l, r, k * 2, opn, opt); 61 else if (mid < l) 62 { 63 update(l, r, k * 2 + 1, opn, opt); 64 } 65 else 66 { 67 update(l, mid, k * 2, opn, opt); 68 update(mid + 1, r, k * 2 + 1, opn, opt); 69 } 70 if (node[k * 2].num >= 0 && node[k * 2].num == node[k * 2 + 1].num) 71 node[k].num = node[k * 2].num; 72 } 73 LL querry(int l, int r, int k) 74 { 75 if (node[k].l == l && node[k].r == r && node[k].num >= 0) 76 { 77 return (LL) node[k].num * (LL) (node[k].r - node[k].l + 1); 78 } 79 if (node[k].num >= 0) 80 { 81 node[k * 2].num = node[k * 2 + 1].num = node[k].num; 82 node[k].num = -1; 83 } 84 int mid = (node[k].r + node[k].l) / 2; 85 if (r <= mid) 86 { 87 return querry(l, r, k * 2); 88 } 89 else if (mid < l) 90 { 91 return querry(l, r, k * 2 + 1); 92 } 93 else 94 return querry(l, mid, k * 2) + querry(mid + 1, r, k * 2 + 1); 95 } 96 int main() 97 { 98 int t; 99 scanf("%d", &t); 100 while (t--) 101 { 102 scanf("%d%d", &n, &m); 103 for (int i = 1; i <= n; i++) 104 scanf("%d", &A[i]); 105 buildtree(1, n, 1); 106 while (m--) 107 { 108 char opt[5]; 109 int opn, a, b; 110 scanf("%s", opt); 111 if (opt[0] == 'S') 112 { 113 scanf("%d%d", &a, &b); 114 printf("%I64d ", querry(a + 1, b + 1, 1)); 115 } 116 else 117 { 118 scanf("%d%d%d", &opn, &a, &b); 119 if (opt[0] == 'A') 120 { 121 update(a + 1, b + 1, 1, opn, 1); 122 } 123 else if (opt[0] == 'O') 124 { 125 update(a + 1, b + 1, 1, opn, 2); 126 } 127 else 128 update(a + 1, b + 1, 1, opn, 3); 129 } 130 } 131 } 132 return 0; 133 }