zoukankan      html  css  js  c++  java
  • 01 织布缺陷——断针缺陷检测

    本文针对织布生产过程中,由于断针造成的织布缺陷图像,进行检测,如下图1所示.

        

    1. 图像质量增强

      由于织布原图的图像整体偏暗,不利于缺陷部分的检测,考虑改善图像质量,而图像质量增强的算法有很多,本文借鉴Retinex的图像增强算法(SSR, MSR, MSRCR)的实现,效果如图2所示.

    参考:https://blog.csdn.net/ajianyingxiaoqinghan/article/details/71435098

    2. 低通滤波/边缘检测

     观测图像2中增强后的图像,虽然织布瑕疵部分,相对正常区域有明显的细长暗条纹痕迹,但是如果直接使用边缘检测的方式,来定位瑕疵部分的边缘,很难找到明显的边界条纹(受织布正常纹理部分的影响,如图3的对比效果图所示).

     这里用低通滤波器,实现对织布纹理背景的过滤,以提供织布瑕疵缺陷的高频细节部分,利于后续的边缘检测效果.

       低通滤波算法,参考:https://blog.csdn.net/weixin_40647819/article/details/80600918?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.channel_param

      边缘检测算法,参考:https://blog.csdn.net/dieju8330/article/details/82814529?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

    3. 形态学处理

    对边缘检测后的图像,进行形态学的膨胀处理,就可以增大缺陷区域的轮廓,以便于利用opencv中找轮廓的方式,定位瑕疵部分的位置.

    4. 定位瑕疵区域

         对形态学处理后的图像,利用opencv中的findContours()函数,通过轮廓的宽高、面积大小等条件设置,来定位织布的瑕疵轮廓区域,具体实现参见代码部分:

    5. 实现代码部分

    MSRCR.h

    #pragma once
    
    #ifndef _MSRCR_H_
    #define _MSRCR_H_
    
    #include "cv.h"
    #include "highgui.h"
    #include "opencv2opencv.hpp"
    #include <math.h>
    
    // 该处使用USE_EXACT_SIGMA,则使用自定义的滤波算法;
    // 不使用USE_EXACT_SIGMA,则使用OpenCV自带的高斯滤波算法;
    //#define USE_EXACT_SIGMA
    
    using namespace cv;
    using namespace std;
    
    class Msrcr
    {
    private:
    #define pc(image, x, y, c) image->imageData[(image->widthStep * y) + (image->nChannels * x) + c]
    #define INT_PREC 1024.0
    #define INT_PREC_BITS 10
        inline double int2double(int x) { return (double)x / INT_PREC; }
        inline int double2int(double x) { return (int)(x * INT_PREC + 0.5); }
        inline int int2smallint(int x) { return (x >> INT_PREC_BITS); }
        inline int int2bigint(int x) { return (x << INT_PREC_BITS); }
    public:
        vector<double> CreateKernel(double sigma);
        vector<int> CreateFastKernel(double sigma);
        void FilterGaussian(IplImage* img, double sigma);
        void FilterGaussian(Mat src, Mat &dst, double sigma);
        void FastFilter(IplImage *img, double sigma);
        void FastFilter(Mat src, Mat &dst, double sigma);
        void Retinex(IplImage *img, double sigma, int gain = 128, int offset = 128);
        void Retinex(Mat src, Mat &dst, double sigma, int gain = 128, int offset = 128);
        void MultiScaleRetinex(IplImage *img, vector<double> weights, vector<double> sigmas, int gain = 128, int offset = 128);
        void MultiScaleRetinex(Mat src, Mat &dst, vector<double> weights, vector<double> sigmas, int gain = 128, int offset = 128);
        void MultiScaleRetinexCR(IplImage *img, vector<double> weights, vector<double> sigmas, int gain = 128, int offset = 128,
            double restoration_factor = 6, double color_gain = 2);
        void MultiScaleRetinexCR(Mat src, Mat &dst, vector<double> weights, vector<double> sigmas, int gain = 128, int offset = 128,
            double restoration_factor = 6, double color_gain = 2);
    };
    
    #endif
    View Code

    MSRCR.cpp

    #include "MSRCR.h"
    
    /*===========================================================
    * 函数: CreateKernel
    * 说明:创建一个标准化的一维高斯核;
    * 参数:
    *   double sigma: 高斯核标准偏差
    * 返回值:
    *   double*: 长度为((6*sigma)/2) * 2 + 1的double数组
    * 注:
    *   调用者需要删除该内核;
    * --------------------------------------------------------
    *  Summary:
    *  Creates a normalized 1 dimensional gaussian kernel.
    *
    *  Arguments:
    *  double sigma - the standard deviation of the gaussian kernel.
    *
    *  Returns:
    *  vector<double> - an vector of values of length ((6*sigma)/2) * 2 + 1.
    *  Note:
    *  Caller is responsable for deleting the kernel.
    =============================================================
    */
    vector<double> Msrcr::CreateKernel(double sigma)
    {
        int i, x, filter_size;
        vector<double> filter;
        double sum;
    
        // set sigma's upline
        // 为sigma设定上限
        if (sigma > 300) sigma = 300;
    
        // get needed filter size (enforce oddness)
        // 获取需要的滤波尺寸,且强制为奇数;
        filter_size = (int)floor(sigma * 6) / 2;
        filter_size = filter_size * 2 + 1;
    
        // Calculate exponential
        // 计算指数
        sum = 0;
        for (i = 0; i < filter_size; i++)
        {
            double tmpValue;
            x = i - (filter_size / 2);
            tmpValue = exp(-(x*x) / (2 * sigma*sigma));
            filter.push_back(tmpValue);
    
            sum += tmpValue;
        }
    
        // Normalize
        // 归一化计算
        for (i = 0, x; i < filter_size; i++)
            filter[i] /= sum;
    
        return filter;
    }
    
    /*===========================================================
    * 函数: CreateFastKernel
    * 说明:创建一个近似浮点的整数类型(左移8bits)的快速高斯核;
    * 参数:
    *   double sigma: 高斯核标准偏差
    * 返回值:
    *   double*: 长度为((6*sigma)/2) * 2 + 1的int数组
    * 注:
    *   调用者需要删除该内核;
    * --------------------------------------------------------
    * Summary:
    * Creates a faster gaussian kernal using integers that
    * approximate floating point (leftshifted by 8 bits)
    *
    * Arguments:
    * double sigma - the standard deviation of the gaussian kernel.
    *
    * Returns:
    * vector<int> - an vector of values of length ((6*sigma)/2) * 2 + 1.
    *
    * Note:
    * Caller is responsable for deleting the kernel.
    =============================================================
    */
    vector<int> Msrcr::CreateFastKernel(double sigma)
    {
        vector<double> fp_kernel;
        vector<int> kernel;
        int i, filter_size;
    
        // Reject unreasonable demands
        // 设置上限
        if (sigma > 300) sigma = 300;
    
        // get needed filter size (enforce oddness)
        // 获取需要的滤波尺寸,且强制为奇数;
        filter_size = (int)floor(sigma * 6) / 2;
        filter_size = filter_size * 2 + 1;
    
        // Create Kernel
        // 创建内核
        fp_kernel = CreateKernel(sigma);
    
        // Change kernel's data type from double to int
        // double内核转为int型
        for (i = 0; i < filter_size; i++)
        {
            int tmpValue;
            tmpValue = double2int(fp_kernel[i]);
            kernel.push_back(tmpValue);
        }
    
        return kernel;
    }
    
    /*===========================================================
    * 函数:FilterGaussian
    * 说明:通过内核计算高斯卷积,内核由sigma值得到,且在内核两端值相等;
    * 参数:
    *   img: 被滤波的IplImage*类型图像
    *   double sigma: 高斯核标准偏差
    * --------------------------------------------------------
    * Summary:
    * Performs a gaussian convolution for a value of sigma that is equal
    * in both directions.
    *
    * Arguments:
    * IplImage* img - the image to be filtered in place.
    * double sigma - the standard deviation of the gaussian kernel to use.
    =============================================================
    */
    void Msrcr::FilterGaussian(IplImage* img, double sigma)
    {
        int i, j, k, source, filter_size;
        vector<int> kernel;
        IplImage* temp;
        int v1, v2, v3;
    
        // Reject unreasonable demands
        // 设置上限
        if (sigma > 300) sigma = 300;
    
        // get needed filter size (enforce oddness)
        // 获取需要的滤波尺寸,且强制为奇数;
        filter_size = (int)floor(sigma * 6) / 2;
        filter_size = filter_size * 2 + 1;
    
        // Create Kernel
        // 创建内核
        kernel = CreateFastKernel(sigma);
    
        temp = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
    
        // filter x axis
        // X轴滤波
        for (j = 0; j < temp->height; j++)
        {
            for (i = 0; i < temp->width; i++)
            {
                // inner loop has been unrolled
                // 内层循环已经展开
                v1 = v2 = v3 = 0;
                for (k = 0; k < filter_size; k++)
                {
                    source = i + filter_size / 2 - k;
    
                    if (source < 0) source *= -1;
                    if (source > img->width - 1) source = 2 * (img->width - 1) - source;
    
                    v1 += kernel[k] * (unsigned char)pc(img, source, j, 0);
                    if (img->nChannels == 1) continue;
                    v2 += kernel[k] * (unsigned char)pc(img, source, j, 1);
                    v3 += kernel[k] * (unsigned char)pc(img, source, j, 2);
                }
    
                // set value and move on
                pc(temp, i, j, 0) = (char)int2smallint(v1);
                if (img->nChannels == 1) continue;
                pc(temp, i, j, 1) = (char)int2smallint(v2);
                pc(temp, i, j, 2) = (char)int2smallint(v3);
    
            }
        }
    
        // filter y axis
        // Y轴滤波
        for (j = 0; j < img->height; j++)
        {
            for (i = 0; i < img->width; i++)
            {
                v1 = v2 = v3 = 0;
                for (k = 0; k < filter_size; k++)
                {
                    source = j + filter_size / 2 - k;
    
                    if (source < 0) source *= -1;
                    if (source > temp->height - 1) source = 2 * (temp->height - 1) - source;
    
                    v1 += kernel[k] * (unsigned char)pc(temp, i, source, 0);
                    if (img->nChannels == 1) continue;
                    v2 += kernel[k] * (unsigned char)pc(temp, i, source, 1);
                    v3 += kernel[k] * (unsigned char)pc(temp, i, source, 2);
                }
    
                // set value and move on
                pc(img, i, j, 0) = (char)int2smallint(v1);
                if (img->nChannels == 1) continue;
                pc(img, i, j, 1) = (char)int2smallint(v2);
                pc(img, i, j, 2) = (char)int2smallint(v3);
    
            }
        }
    
        cvReleaseImage(&temp);
    }
    
    /*===========================================================
    * 函数:FilterGaussian
    * 说明:通过内核计算高斯卷积,内核由sigma值得到,且在内核两端值相等;
    * 参数:
    *   Mat src: 输入图像
    *   Mat &dst: 输出图像
    *   double sigma: 高斯核标准偏差
    * --------------------------------------------------------
    * Summary:
    * Performs a gaussian convolution for a value of sigma that is equal
    * in both directions.
    *
    * Arguments:
    * Mat src - Input Image.
    * Mat &dst - Output Image.
    * double sigma - the standard deviation of the gaussian kernel to use.
    =============================================================
    */
    void Msrcr::FilterGaussian(Mat src, Mat &dst, double sigma)
    {
        IplImage tmp_ipl;
        tmp_ipl = IplImage(src);
        FilterGaussian(&tmp_ipl, sigma);
        dst = cvarrToMat(&tmp_ipl);
    
        //dst = Mat(&tmp_ipl);
    }
    
    /*===========================================================
    * 函数:FastFilter
    * 说明:给出任意大小的sigma值,都可以通过使用图像金字塔与可分离滤波器计算高斯卷积;
    * 参数:
    *   IplImage *img: 被滤波的图像
    *   double sigma: 高斯核标准偏差
    * --------------------------------------------------------
    * Summary:
    * Performs gaussian convolution of any size sigma very fast by using
    * both image pyramids and seperable filters.  Recursion is used.
    *
    * Arguments:
    * img - an IplImage to be filtered in place.
    * double sigma - the standard deviation of the gaussian kernel to use.
    =============================================================
    */
    void Msrcr::FastFilter(IplImage *img, double sigma)
    {
        int filter_size;
    
        // Reject unreasonable demands
        // 设置上限
        if (sigma > 300) sigma = 300;
    
        // get needed filter size (enforce oddness)
        // 获取需要的滤波尺寸,且强制为奇数;
        filter_size = (int)floor(sigma * 6) / 2;
        filter_size = filter_size * 2 + 1;
    
        // If 3 sigma is less than a pixel, why bother (ie sigma < 2/3)
        // 如果3 * sigma小于一个像素,则直接退出
        if (filter_size < 3) return;
    
        // Filter, or downsample and recurse
        // 处理方式:(1) 滤波  (2) 高斯光滑处理  (3) 递归处理滤波器大小
        if (filter_size < 10) {
    
    #ifdef USE_EXACT_SIGMA
            FilterGaussian(img, sigma);
    #else
            cvSmooth(img, img, CV_GAUSSIAN, filter_size, filter_size);
    #endif
    
        }
        else
        {
            if (img->width < 2 || img->height < 2) return;
            IplImage* sub_img = cvCreateImage(cvSize(img->width / 2, img->height / 2), img->depth, img->nChannels);
            cvPyrDown(img, sub_img);
            FastFilter(sub_img, sigma / 2.0);
            cvResize(sub_img, img, CV_INTER_LINEAR);
            cvReleaseImage(&sub_img);
        }
    }
    
    /*===========================================================
    * 函数:FastFilter
    * 说明:给出任意大小的sigma值,都可以通过使用图像金字塔与可分离滤波器计算高斯卷积;
    * 参数:
    *   Mat src: 输入图像
    *   Mat &dst: 输出图像
    *   double sigma: 高斯核标准偏差
    * --------------------------------------------------------
    * Summary:
    * Performs gaussian convolution of any size sigma very fast by using
    * both image pyramids and seperable filters.  Recursion is used.
    *
    * Arguments:
    * Mat src - Input Image.
    * Mat &dst - Output Image.
    * double sigma - the standard deviation of the gaussian kernel to use.
    =============================================================
    */
    void Msrcr::FastFilter(Mat src, Mat &dst, double sigma)
    {
        IplImage tmp_ipl;
        tmp_ipl = IplImage(src);
        FastFilter(&tmp_ipl, sigma);
        dst = cvarrToMat(&tmp_ipl);
        //dst = Mat(&tmp_ipl);
    }
    
    /*===========================================================
    * 函数:Retinex
    * 说明:单通道SSR方法,基础Retinex复原算法。原图像和被滤波的图像需要被转换到
    *   对数域,并做减运算;
    * 参数:
    *   IplImage *img: 被滤波的图像
    *   double sigma: 高斯核标准偏差
    *   int gain: 图像像素值改变范围的增益
    *   int offset: 图像像素值改变范围的偏移量
    * --------------------------------------------------------
    * Summary:
    * Basic retinex restoration. The image and a filtered image are converted
    * to the log domain and subtracted.
    *
    * Arguments:
    * img - an IplImage to be enhanced in place.
    * sigma - the standard deviation of the gaussian kernal used to filter.
    * gain - the factor by which to scale the image back into visable range.
    * offset - an offset similar to the gain.
    =============================================================
    */
    void Msrcr::Retinex(IplImage *img, double sigma, int gain, int offset)
    {
        IplImage *A, *fA, *fB, *fC;
    
        // Initialize temp images
        // 初始化缓存图像
        fA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
    
        // Compute log image
        // 计算对数图像
        cvConvert(img, fA);
        cvLog(fA, fB);
    
        // Compute log of blured image
        // 计算滤波后模糊图像的对数图像
        A = cvCloneImage(img);
        FastFilter(A, sigma);
        cvConvert(A, fA);
        cvLog(fA, fC);
    
        // Compute difference
        // 计算两图像之差
        cvSub(fB, fC, fA);
    
        // Restore
        // 恢复图像
        cvConvertScale(fA, img, gain, offset);
    
        // Release temp images
        // 释放缓存图像
        cvReleaseImage(&A);
        cvReleaseImage(&fA);
        cvReleaseImage(&fB);
        cvReleaseImage(&fC);
    
    }
    
    /*===========================================================
    * 函数:Retinex
    * 说明:单通道SSR方法,基础Retinex复原算法。原图像和被滤波的图像需要被转换到
    *   对数域,并做减运算;
    * 参数:
    *   Mat src: 输入图像
    *   Mat &dst: 输出图像
    *   double sigma: 高斯核标准偏差
    *   int gain: 图像像素值改变范围的增益
    *   int offset: 图像像素值改变范围的偏移量
    * --------------------------------------------------------
    * Summary:
    * Basic retinex restoration. The image and a filtered image are converted
    * to the log domain and subtracted.
    *
    * Arguments:
    * Mat src - Input Image.
    * Mat &dst - Output Image.
    * sigma - the standard deviation of the gaussian kernal used to filter.
    * gain - the factor by which to scale the image back into visable range.
    * offset - an offset similar to the gain.
    =============================================================
    */
    void Msrcr::Retinex(Mat src, Mat &dst, double sigma, int gain, int offset)
    {
        IplImage tmp_ipl;
        tmp_ipl = IplImage(src);
        Retinex(&tmp_ipl, sigma, gain, offset);
    
        dst = cvarrToMat(&tmp_ipl);
        //dst = Mat(&tmp_ipl);
    }
    
    /*===========================================================
    * 函数:MultiScaleRetinex
    * 说明:多通道MSR算法。原图像和一系列被滤波的图像转换到对数域,并与带权重的原图像做减运算。
    * 通常情况下,三个权重范围选择低、中、高标准偏差;
    *
    * 参数:
    *   IplImage *img: 被滤波的图像
    *   vector<double> weights: 通道权重
    *   vector<double> sigmas: 高斯核标准偏差
    *   int gain: 图像像素值改变范围的增益
    *   int offset: 图像像素值改变范围的偏移量
    * --------------------------------------------------------
    * Summary:
    * Multiscale retinex restoration.  The image and a set of filtered images are
    * converted to the log domain and subtracted from the original with some set
    * of weights. Typicaly called with three equaly weighted scales of fine,
    * medium and wide standard deviations.
    *
    * Arguments:
    * IplImage* img - an IplImage to be enhanced in place.
    * vector<double> weights - Weights of channels
    * vector<double> sigma - the standard deviation of the gaussian kernal used to filter.
    * int gain - the factor by which to scale the image back into visable range.
    * int offset - an offset similar to the gain.
    =============================================================
    */
    void Msrcr::MultiScaleRetinex(IplImage *img, vector<double> weights, vector<double> sigmas, int gain, int offset)
    {
        int i;
        double weight;
        int scales = sigmas.size();
        IplImage *A, *fA, *fB, *fC;
    
        // Initialize temp images
        fA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
    
    
        // Compute log image
        cvConvert(img, fA);
        cvLog(fA, fB);
    
        // Normalize according to given weights
        for (i = 0, weight = 0; i < scales; i++)
            weight += weights[i];
    
        if (weight != 1.0) cvScale(fB, fB, weight);
    
        // Filter at each scale
        for (i = 0; i < scales; i++)
        {
            A = cvCloneImage(img);
            double tmp = sigmas[i];
            FastFilter(A, tmp);
    
            cvConvert(A, fA);
            cvLog(fA, fC);
            cvReleaseImage(&A);
    
            // Compute weighted difference
            cvScale(fC, fC, weights[i]);
            cvSub(fB, fC, fB);
        }
    
        // Restore
        cvConvertScale(fB, img, gain, offset);
    
        // Release temp images
        cvReleaseImage(&fA);
        cvReleaseImage(&fB);
        cvReleaseImage(&fC);
    }
    
    /*===========================================================
    * 函数:MultiScaleRetinex
    * 说明:多通道MSR算法。原图像和一系列被滤波的图像转换到对数域,并与带权重的原图像做减运算。
    * 通常情况下,三个权重范围选择低、中、高标准偏差;
    *
    * 参数:
    *   Mat src: 输入图像
    *   Mat &dst: 输出图像
    *   vector<double> weights: 通道权重
    *   vector<double> sigmas: 高斯核标准偏差
    *   int gain: 图像像素值改变范围的增益
    *   int offset: 图像像素值改变范围的偏移量
    * --------------------------------------------------------
    * Summary:
    * Multiscale retinex restoration.  The image and a set of filtered images are
    * converted to the log domain and subtracted from the original with some set
    * of weights. Typicaly called with three equaly weighted scales of fine,
    * medium and wide standard deviations.
    *
    * Arguments:
    * Mat src - Input Image.
    * Mat &dst - Output Image.
    * vector<double> weights - Weights of channels
    * vector<double> sigmas - the standard deviation of the gaussian kernal used to filter.
    * int gain - the factor by which to scale the image back into visable range.
    * int offset - an offset similar to the gain.
    =============================================================
    */
    void Msrcr::MultiScaleRetinex(Mat src, Mat &dst, vector<double> weights, vector<double> sigmas, int gain, int offset)
    {
        IplImage tmp_ipl;
        tmp_ipl = IplImage(src);
        MultiScaleRetinex(&tmp_ipl, weights, sigmas, gain, offset);
    
        dst = cvarrToMat(&tmp_ipl);
    
        //dst = Mat(&tmp_ipl);
    }
    
    /*===========================================================
    * 函数:MultiScaleRetinexCR
    * 说明:MSRCR算法,MSR算法加上颜色修复。原图像和一系列被滤波的图像转换到对数域,并与带权重的原图像做减运算。
    * 通常情况下,三个权重范围选择低、中、高标准偏差;之后,颜色修复权重应用于每个颜色通道中;
    *
    * 参数:
    *   IplImage *img: 被滤波的图像
    *   double sigma: 高斯核标准偏差
    *   int gain: 图像像素值改变范围的增益
    *   int offset: 图像像素值改变范围的偏移量
    *   double restoration_factor: 控制颜色修复的非线性
    *   double color_gain: 控制颜色修复增益
    * --------------------------------------------------------
    * Summary:
    * Multiscale retinex restoration with color restoration.  The image and a set of
    * filtered images are converted to the log domain and subtracted from the
    * original with some set of weights. Typicaly called with three equaly weighted
    * scales of fine, medium and wide standard deviations. A color restoration weight
    * is then applied to each color channel.
    *
    * Arguments:
    * IplImage *img - an IplImage to be enhanced in place.
    * double sigma - the standard deviation of the gaussian kernal used to filter.
    * int gain - the factor by which to scale the image back into visable range.
    * int offset - an offset similar to the gain.
    * double restoration_factor - controls the non-linearaty of the color restoration.
    * double color_gain - controls the color restoration gain.
    =============================================================
    */
    void Msrcr::MultiScaleRetinexCR(IplImage *img, vector<double> weights, vector<double> sigmas,
        int gain, int offset, double restoration_factor, double color_gain)
    {
        int i;
        double weight;
        int scales = sigmas.size();
        IplImage *A, *B, *C, *fA, *fB, *fC, *fsA, *fsB, *fsC, *fsD, *fsE, *fsF;
    
        // Initialize temp images
        // 初始化缓存图像
        fA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);
        fsA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
        fsB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
        fsC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
        fsD = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
        fsE = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
        fsF = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);
    
        // Compute log image
        // 计算对数图像
        cvConvert(img, fB);
        cvLog(fB, fA);
    
        // Normalize according to given weights
        // 依照权重归一化
        for (i = 0, weight = 0; i < scales; i++)
            weight += weights[i];
    
        if (weight != 1.0) cvScale(fA, fA, weight);
    
        // Filter at each scale
        // 各尺度上进行滤波操作
        for (i = 0; i < scales; i++) {
            A = cvCloneImage(img);
            FastFilter(A, sigmas[i]);
    
            cvConvert(A, fB);
            cvLog(fB, fC);
            cvReleaseImage(&A);
    
            // Compute weighted difference
            // 计算权重后两图像之差
            cvScale(fC, fC, weights[i]);
            cvSub(fA, fC, fA);
        }
    
        // Color restoration
        // 颜色修复
        if (img->nChannels > 1) {
            A = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
            B = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
            C = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);
    
            // Divide image into channels, convert and store sum
            // 将图像分割为若干通道,类型转换为浮点型,并存储通道数据之和
            cvSplit(img, A, B, C, NULL);
            cvConvert(A, fsA);
            cvConvert(B, fsB);
            cvConvert(C, fsC);
    
            cvReleaseImage(&A);
            cvReleaseImage(&B);
            cvReleaseImage(&C);
    
            // Sum components
            // 求和
            cvAdd(fsA, fsB, fsD);
            cvAdd(fsD, fsC, fsD);
    
            // Normalize weights
            // 带权重矩阵归一化
            cvDiv(fsA, fsD, fsA, restoration_factor);
            cvDiv(fsB, fsD, fsB, restoration_factor);
            cvDiv(fsC, fsD, fsC, restoration_factor);
    
            cvConvertScale(fsA, fsA, 1, 1);
            cvConvertScale(fsB, fsB, 1, 1);
            cvConvertScale(fsC, fsC, 1, 1);
    
            // Log weights
            // 带权重矩阵求对数
            cvLog(fsA, fsA);
            cvLog(fsB, fsB);
            cvLog(fsC, fsC);
    
            // Divide retinex image, weight accordingly and recombine
            // 将Retinex图像切分为三个数组,按照权重和颜色增益重新组合
            cvSplit(fA, fsD, fsE, fsF, NULL);
    
            cvMul(fsD, fsA, fsD, color_gain);
            cvMul(fsE, fsB, fsE, color_gain);
            cvMul(fsF, fsC, fsF, color_gain);
    
            cvMerge(fsD, fsE, fsF, NULL, fA);
        }
    
        // Restore
        // 恢复图像
        cvConvertScale(fA, img, gain, offset);
    
        // Release temp images
        // 释放缓存图像
        cvReleaseImage(&fA);
        cvReleaseImage(&fB);
        cvReleaseImage(&fC);
        cvReleaseImage(&fsA);
        cvReleaseImage(&fsB);
        cvReleaseImage(&fsC);
        cvReleaseImage(&fsD);
        cvReleaseImage(&fsE);
        cvReleaseImage(&fsF);
    }
    
    /*===========================================================
    * 函数:MultiScaleRetinexCR
    * 说明:MSRCR算法,MSR算法加上颜色修复。原图像和一系列被滤波的图像转换到对数域,并与带权重的原图像做减运算。
    * 通常情况下,三个权重范围选择低、中、高标准偏差;之后,颜色修复权重应用于每个颜色通道中;
    *
    * 参数:
    *   Mat src: 输入图像
    *   Mat &dst: 输出图像
    *   double sigma: 高斯核标准偏差
    *   int gain: 图像像素值改变范围的增益
    *   int offset: 图像像素值改变范围的偏移量
    *   double restoration_factor: 控制颜色修复的非线性
    *   double color_gain: 控制颜色修复增益
    * --------------------------------------------------------
    * Summary:
    * Multiscale retinex restoration with color restoration.  The image and a set of
    * filtered images are converted to the log domain and subtracted from the
    * original with some set of weights. Typicaly called with three equaly weighted
    * scales of fine, medium and wide standard deviations. A color restoration weight
    * is then applied to each color channel.
    *
    * Arguments:
    * Mat src - Input Image.
    * Mat &dst - Output Image.
    * double sigma - the standard deviation of the gaussian kernal used to filter.
    * int gain - the factor by which to scale the image back into visable range.
    * int offset - an offset similar to the gain.
    * double restoration_factor - controls the non-linearaty of the color restoration.
    * double color_gain - controls the color restoration gain.
    =============================================================
    */
    void Msrcr::MultiScaleRetinexCR(Mat src, Mat &dst, vector<double> weights, vector<double> sigmas,
        int gain, int offset, double restoration_factor, double color_gain)
    {
        IplImage tmp_ipl;
        tmp_ipl = IplImage(src);
        MultiScaleRetinexCR(&tmp_ipl, weights, sigmas, gain, offset, restoration_factor, color_gain);
    
        dst = cvarrToMat(&tmp_ipl);
    
        //dst = Mat(&tmp_ipl);
    }
    View Code

     Main.cpp

    #include "cv.h"
    #include "highgui.h"
    #include "opencv2opencv.hpp"
    
    #include "MSRCR.h"
    
    using namespace cv;
    using namespace std;
    
    //*****************高斯低通滤波器***********************
    Mat gaussianlbrf(Mat scr, float sigma)
    {
        Mat gaussianBlur(scr.size(), CV_32FC1); //,CV_32FC1
        float d0 = 2 * sigma*sigma;//高斯函数参数,越小,频率高斯滤波器越窄,滤除高频成分越多,图像就越平滑
        for (int i = 0; i<scr.rows; i++)
        {
            for (int j = 0; j<scr.cols; j++)
            {
                float d = pow(float(i - scr.rows / 2), 2) + pow(float(j - scr.cols / 2), 2);//分子,计算pow必须为float型
                gaussianBlur.at<float>(i, j) = expf(-d / d0);//expf为以e为底求幂(必须为float型)
            }
        }
        //imshow("高斯低通滤波器", gaussianBlur);
        return gaussianBlur;
    }
    
    //*****************频率域滤波*******************
    Mat freqfilt(Mat scr, Mat blur)
    {
        //***********************DFT*******************
        Mat plane[] = { scr, Mat::zeros(scr.size() , CV_32FC1) }; //创建通道,存储dft后的实部与虚部(CV_32F,必须为单通道数)
        Mat complexIm;
        merge(plane, 2, complexIm);//合并通道 (把两个矩阵合并为一个2通道的Mat类容器)
        dft(complexIm, complexIm);//进行傅立叶变换,结果保存在自身  
    
                                  //***************中心化********************
        split(complexIm, plane);//分离通道(数组分离)
    
        int cx = plane[0].cols / 2; int cy = plane[0].rows / 2;//以下的操作是移动图像  (零频移到中心)
        Mat part1_r(plane[0], Rect(0, 0, cx, cy));  //元素坐标表示为(cx,cy)
        Mat part2_r(plane[0], Rect(cx, 0, cx, cy));
        Mat part3_r(plane[0], Rect(0, cy, cx, cy));
        Mat part4_r(plane[0], Rect(cx, cy, cx, cy));
    
        Mat temp;
        part1_r.copyTo(temp);  //左上与右下交换位置(实部)
        part4_r.copyTo(part1_r);
        temp.copyTo(part4_r);
    
        part2_r.copyTo(temp);  //右上与左下交换位置(实部)
        part3_r.copyTo(part2_r);
        temp.copyTo(part3_r);
    
        Mat part1_i(plane[1], Rect(0, 0, cx, cy));  //元素坐标(cx,cy)
        Mat part2_i(plane[1], Rect(cx, 0, cx, cy));
        Mat part3_i(plane[1], Rect(0, cy, cx, cy));
        Mat part4_i(plane[1], Rect(cx, cy, cx, cy));
    
        part1_i.copyTo(temp);  //左上与右下交换位置(虚部)
        part4_i.copyTo(part1_i);
        temp.copyTo(part4_i);
    
        part2_i.copyTo(temp);  //右上与左下交换位置(虚部)
        part3_i.copyTo(part2_i);
        temp.copyTo(part3_i);
    
        //*****************滤波器函数与DFT结果的乘积****************
        Mat blur_r, blur_i, BLUR;
        multiply(plane[0], blur, blur_r); //滤波(实部与滤波器模板对应元素相乘)
        multiply(plane[1], blur, blur_i);//滤波(虚部与滤波器模板对应元素相乘)
        Mat plane1[] = { blur_r, blur_i };
        merge(plane1, 2, BLUR);//实部与虚部合并
    
                               //*********************得到原图频谱图***********************************
        magnitude(plane[0], plane[1], plane[0]);//获取幅度图像,0通道为实部通道,1为虚部,因为二维傅立叶变换结果是复数  
        plane[0] += Scalar::all(1);  //傅立叶变o换后的图片不好分析,进行对数处理,结果比较好看 
        log(plane[0], plane[0]);    // float型的灰度空间为[0,1])
        normalize(plane[0], plane[0], 1, 0, CV_MINMAX);  //归一化便于显示
        //imshow("原图像频谱图", plane[0]);
    
    
        //******************IDFT*******************************
        /*
        Mat part111(BLUR,Rect(0,0,cx,cy));  //元素坐标(cx,cy)
        Mat part222(BLUR,Rect(cx,0,cx,cy));
        Mat part333(BLUR,Rect(0,cy,cx,cy));
        Mat part444(BLUR,Rect(cx,cy,cx,cy));
        part111.copyTo(temp);  //左上与右下交换位置(虚部)
        part444.copyTo(part111);
        temp.copyTo(part444);
    
        part222.copyTo(temp);  //右上与左下交换位置
        part333.copyTo(part222);
        temp.copyTo(part333);
        */
    
        idft(BLUR, BLUR);    //idft结果也为复数
        split(BLUR, plane);//分离通道,主要获取通道
        magnitude(plane[0], plane[1], plane[0]);  //求幅值(模)
        normalize(plane[0], plane[0], 1, 0, CV_MINMAX);  //归一化便于显示
        return plane[0];//返回参数
    }
    
    void img_processing(Msrcr &msrcr, Mat &img, Mat &outImg, vector<double> sigema, vector<double> weight)
    {
        
        int edge = 10;
        cv::Rect ROI(edge, edge, img.cols - edge, img.rows - edge);
    
        // ************************1. 图像增强
        Mat img_msrcr;
        msrcr.MultiScaleRetinexCR(img, img_msrcr, weight, sigema, 128, 128);
    
        // ********************** 2. 低通滤波图
        cv::Mat img_gray;
        cv::cvtColor(img_msrcr, img_gray, cv::COLOR_BGR2GRAY);
        
        int w = getOptimalDFTSize(img_gray.cols);  //获取进行dtf的最优尺寸
        int h = getOptimalDFTSize(img_gray.rows); //获取进行dtf的最优尺寸
    
        Mat padded;
        copyMakeBorder(img_gray, padded, 0, h - img_gray.rows, 0, w - img_gray.cols, BORDER_CONSTANT, Scalar::all(0));  //边界填充
        padded.convertTo(padded, CV_32FC1); //将图像转换为flaot型
    
        Mat gaussianKernel = gaussianlbrf(padded, 50);//高斯低通滤波器
        Mat out = freqfilt(padded, gaussianKernel);//频率域滤波
    
        Mat imageF_8UC3;
        out.convertTo(imageF_8UC3, CV_8UC3, 255);
    
    
        // *********************3. Canny边缘检测
        Mat img_gaussian, img_canny;
        GaussianBlur(imageF_8UC3, img_gaussian, Size(5, 5), 0, 0, BORDER_DEFAULT); //高斯滤波
    
        int edgeThresh = 15;
        Canny(img_gaussian, img_canny, edgeThresh, edgeThresh*4, 3); //Canny检测
    
        cv::Mat img_canny_cut = cv::Mat(img_canny, ROI);
        cv::Mat img_canny_roi = img_canny_cut.clone();
    
    
        // ***********************4. 形态学处理
        Mat element, img_dilate;
        element = getStructuringElement(MORPH_RECT, Size(5, 5));
        dilate(img_canny_roi, img_dilate, element, Point(-1, -1), 2, BORDER_CONSTANT);
    
        Mat img_bin;
        img_bin = img_dilate.clone();
        std::vector<std::vector<cv::Point> > contours;
        findContours(img_bin, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); //找轮廓,注意第5个参数为CV_RETR_EXTERNAL,只检索外框  
    
        if (contours.size() <= 0 || contours.size() > 999999)
        {
            printf("obj_segmentSecond 函数:coutours的大小超出限制...");
            return;
        }
    
        int width_less = 0.2*w;
    
        double least_area = 1000;
    
        std::vector<cv::Rect> boundRect(contours.size());    // 绘制最小外接矩形集合
        std::vector<cv::RotatedRect> box(contours.size());    // 定义最小外接矩形集合
    
        Mat img_copy;
        img_copy = img.clone();
    
        cv::Mat img_copy_cut = cv::Mat(img_copy, ROI);
        cv::Mat img_copy_roi = img_copy_cut.clone();
        
        for (int i = 0; i < contours.size(); i++) 
        {
            double area = contourArea(contours[i]);
    
            if (area < least_area)
                continue;
    
            box[i] = cv::minAreaRect(cv::Mat(contours[i])); // 计算每个轮廓的最小外接矩形
            boundRect[i] = cv::boundingRect(cv::Mat(contours[i]));
    
            cv::Point2f rect[4];
            box[i].points(rect);  // 把最小外接矩形四个端点复制给rect数组
    
            //// 小于分块的边界长度
    
            // 确定竖_方向织布缺陷
            if (boundRect[i].width < boundRect[i].height) 
            {
    
                int box_X = boundRect[i].x;
                int box_Y = boundRect[i].y;
    
                // 判断缺陷窗口的坐标X是否在边界禁止范围内
                if (box_X > img_copy_roi.cols - 50 || box_Y >img_copy_roi.rows - 15)
                {
                    printf("坐标X在边界禁止范围内... 
    ");
                    continue;
                }
    
                cv::circle(img_copy_roi, cv::Point(box[i].center.x, box[i].center.y),
                    5, cv::Scalar(0, 255, 0), -1, 8);   // 绘制最小外接矩形的中心点
                /*cv::rectangle(img_copy, cv::Point(boundRect[i].x, boundRect[i].y),
                cv::Point(boundRect[i].x + boundRect[i].width, boundRect[i].y + boundRect[i].height), cv::Scalar(0, 255, 0), 2, 8);
                */
    
                for (int j = 0; j<4; j++)
                {
                    cv::line(img_copy_roi, rect[j], rect[(j + 1) % 4], cv::Scalar(255), 2, 8);  //绘制最小外接矩形每条边
                    cv::line(img_copy_roi, rect[j], rect[(j + 1) % 4], cv::Scalar(0, 255, 0), 2, 8); //绘制最小外接矩形每条边
                }
            }
            else  // 确定横_方向织布缺陷
            {
    
                int box_X = boundRect[i].x;
                int box_Y = boundRect[i].y;
    
                // 判断缺陷窗口的坐标X是否在边界禁止范围内
                if (box_X > img_copy_roi.cols - 50 || box_Y >img_copy_roi.rows - 15)
                {
                    printf("坐标X在边界禁止范围内... 
    ");
                    continue;
                }
    
                if (boundRect[i].width < 0.3*w)
                    continue;
    
                cv::circle(img_copy_roi, cv::Point(box[i].center.x, box[i].center.y),
                    5, cv::Scalar(0, 255, 0), -1, 8);   // 绘制最小外接矩形的中心点
                /*cv::rectangle(img_copy, cv::Point(boundRect[i].x, boundRect[i].y),
                cv::Point(boundRect[i].x + boundRect[i].width, boundRect[i].y + boundRect[i].height), cv::Scalar(0, 255, 0), 2, 8);
                */
                for (int j = 0; j<4; j++)
                {
                    cv::line(img_copy_roi, rect[j], rect[(j + 1) % 4], cv::Scalar(255), 2, 8);  //绘制最小外接矩形每条边
                    cv::line(img_copy_roi, rect[j], rect[(j + 1) % 4], cv::Scalar(255, 0, 0), 2, 8); //绘制最小外接矩形每条边
                }
            
            }
        }
    
    
        outImg = img_copy_roi.clone();
    
    }
    
    
    void read_video() 
    {
        vector<double> sigema;
        vector<double> weight;
    
        for (int i = 0; i < 3; i++)
            weight.push_back(1. / 3);
    
        // 由于MSRCR.h中定义了宏USE_EXTRA_SIGMA,所以此处的vector<double> sigema并没有什么意义
        sigema.push_back(30);
        sigema.push_back(150);
        sigema.push_back(300);
    
        Msrcr msrcr;
    
    
        // *****************************1. 测试单张图像*****************************************
        //Mat img, dst;
        //img = imread("F:\BaiduNetdiskDownload\织物瑕疵检测\video_photo_fail\570.jpg", 1);
    
        //img_processing(msrcr, img, dst, sigema, weight);
    
        //imshow("src", img);
        //imshow("dst", dst);
        //imwrite("F:\BaiduNetdiskDownload\织物瑕疵检测\frame_fail\570_filter_50.jpg", dst);
    
        //waitKey(10000);
        //return;
    
        
        // *****************************2. 连续测试多帧图像*****************************************
        string file_path, fileName, grayFile, saveFile_path, saveFileName;
    
        file_path = "F:\BaiduNetdiskDownload\织物瑕疵检测\video_photo_fail\";
        saveFile_path = "F:\BaiduNetdiskDownload\织物瑕疵检测\frame_detect\";
    
        string str1, str2;
        Mat srcImage, grayImage, outImg;
        for (int i = 1; i <= 100000; i++)
        {
            /*if (i < 2000)
                continue;*/
    
            printf("i =%d 
    ", i);
    
            stringstream ss1, ss2;
    
            ss1 << i;
            ss1 >> str1;
    
            //cout << str1 << endl;
            fileName = file_path + str1 + ".jpg";
            srcImage = imread(fileName, 1);
            
            img_processing(msrcr, srcImage, outImg, sigema, weight);
            saveFileName = saveFile_path + std::to_string(i) + ".bmp";
    
            imwrite(saveFileName, outImg);
    
            imshow("src", srcImage);
            imshow("dst", outImg);
        
            waitKey(1);
    
        }
        
    }
    
    
    int main()
    {
    
        read_video();
        system("pause");
        
        return 0;
    }
    View Code
  • 相关阅读:
    【洛谷P2921】[USACO08DEC]在农场万圣节Trick or Treat on the Farm
    【洛谷P3659】[USACO17FEB]Why Did the Cow Cross the Road I G
    【洛谷P3385】【模板】负环
    Typora+PicGo+Gitee实现图片上传功能
    Java substring() 方法
    Java lastIndexOf的用法
    Tomcat控制台乱码处理解决方法
    HTTP 协议中 URI 和 URL 有什么区别?
    java如何判断某一变量属于什么类型
    Idea发布web项目显示“找不到应用程序”的解决方法
  • 原文地址:https://www.cnblogs.com/zhaopengpeng/p/13502609.html
Copyright © 2011-2022 走看看