zoukankan      html  css  js  c++  java
  • 海边直播目标2017全国初中数学竞赛班作业题-2

    设抛物线 $y = x^2 - 8x + 12$ 交 $x$ 轴于 $A(x_1, 0), B(x_2, 0)$, ($x_1 < x_2$) 两点, 以线段 $AB$ 为非直径的弦的圆交直线 $l_1: y = -x + 6$ 于 $E$ 点, 与直线 $l_2: y = x - 6$ 相交于 $F$ 点. 当直线 $EF$ 交直线 $l_1$ 成 $30^{circ}$ (即 $angle{FEB} = 30^{circ}$)时, 试求 $BE, BF$ 的长.

     

    解答:

    易知 $A(2, 0)$, $B(6, 0)$, $l_1, l_2$ 交于 $B$, 且 $l_1 perp l_2$.

    即 $angle{EBF} = 90^circ Rightarrow EF$ 是直径,

    $Rightarrow angle{EAF = 90^circ}, angle{AFE} = angle{ABE} = 45^circ,$

    $Rightarrow AE = AF$, 即 $ riangle{AEF}$ 是等腰直角三角形.

    $ecause angle{FEB} = 30^circ$, 设 $EF = 2r$, $BF = r$, $BE = sqrt3r$,

    $ herefore AE = sqrt2 r$.

    在 $ riangle{ABE}$ 中, 由余弦定理知 $$AE^2 = AB^2 + BE^2 - 2ABcdot BE cdot cos45^circ$$ $$Rightarrow 2r^2 = 16 + 3r^2 - 2cdot4cdotsqrt3rcdot{sqrt2over2}$$ $$Rightarrow r^2 - 4sqrt6r + 16 = 0$$ $$Rightarrow r = 2sqrt6 pm2sqrt2$$ $$Rightarrow egin{cases}BE = 6sqrt2 - 2sqrt6\ BF = 2sqrt6 - 2sqrt2end{cases}, egin{cases}BE = 6sqrt2 + 2sqrt6\ BF = 2sqrt6 + 2sqrt2end{cases}.$$

     

     

     

    扫描关注“奥数学苑”微信公众号(ID: aoshu_xueyuan)

     


    作者:赵胤
    出处:http://www.cnblogs.com/zhaoyin/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    在命令提示符中使用antlr
    Migrating to Rails 2.0.2
    从AJAX IN ACTION书中学用 RSS READER
    maple download url
    搜索
    发邀请在线RoR开发与部署环境www.heroku.com
    if can't use ruby in command line
    查询表中某字段有重复记录的个数
    WPF窗体自适应分辨率
    《思考,快与慢》
  • 原文地址:https://www.cnblogs.com/zhaoyin/p/5684731.html
Copyright © 2011-2022 走看看