zoukankan      html  css  js  c++  java
  • 2016猿辅导初中数学竞赛训练营作业题解答-9

    扫描以下二维码下载并安装猿辅导App, 打开后请搜索教师姓名"赵胤"即可报名本课程(14次课, 99元).

    1. 若 $displaystyle{1over n} - {1over m} - {1over n+m} = 0$, 则 $displaystyleleft({mover n} + {n over m} ight)^2 = ?$

    解答: $${1over n} - {1over m} = {1over n + m} Rightarrow m^2 - n^2 = mn$$ $$Rightarrow {m over n} - {n over m} = 1Rightarrow left({m over n} - {n over m} ight)^2 = 1$$ $$Rightarrow left({m over n} + {n over m} ight)^2 = left({m over n} - {n over m} ight)^2 + 4 = 5.$$

    2. 若 $displaystyle{1over x} = {2over y+z} = {3over z+x}$, 则 $displaystyle{z+y over x} = ?$

    解答: $${1over x} = {2over y+z} Rightarrow {z+y over x} = 2.$$

    3. 若 $displaystyle{xover a-b} = {y over b-c} = {z over c-a}$, 则 $x + y + z = ?$

    解答:

    令 $displaystyle{xover a-b} = {y over b-c} = {z over c-a} = k$, $$Rightarrow x + y + z = k(a - b + b - c + c - a) = 0.$$

    4. 若 $x^2 - 8x + 13 = 0$, 则 $displaystyle{x^4 - 6x^3 - 2x^2 + 18x + 23 over x^2 - 8x + 15} = ?$

    解答: $$x^4 - 6x^3 - 2x^2 + 18x + 23$$ $$= x^2(x^2 - 8x + 13) + 2x^3 - 15x^2 + 18x + 23$$ $$= 2x(x^2 - 8x + 13) + x^2 - 8x + 23$$ $$= x^2 - 8x + 13 + 10 = 10,$$ $$x^2 - 8x + 15 = x^2 - 8x + 13 + 2 = 2,$$ $$Rightarrow {x^4 - 6x^3 - 2x^2 + 18x + 23 over x^2 - 8x + 15} = 5.$$

    5. 若 $x + y + z = 3$, 且 $x, y, z$ 不全相等, 则 $displaystyle{3(x-1)(y-1)(z-1) over (x-1)^3 + (y-1)^3 + (z-1)^3} = ?$

    解答: $$x+y+z = 3 Rightarrow (x - 1)+(y - 1)+(z - 1) = 0$$ $$Rightarrow (x - 1)^3 + (y - 1)^3 + (z - 1)^3 = 3(x - 1)(y - 1)(z - 1)$$ $$Rightarrow {3(x-1)(y-1)(z-1) over (x-1)^3 + (y-1)^3 + (z-1)^3} = 1.$$

    6. 若 $displaystyle{x over y} = {5over3}$, $displaystyle{yover z} = {7 over 2}$, 则 $displaystyle{x-y over y-z} =?$

    解答: $$x = {5over3}y, z = {2over7}y,$$  $$Rightarrow {x-y over y-z} = {{2over3}yover{5over7}y} = {14over15}.$$

    7. 若 $displaystyle{3over x} - {2over y} = 5$, 则 $displaystyle{2x + 7xy - 3y over 4x - xy - 6y} =?$

    解答: $${2x + 7xy - 3y over 4x - xy - 6y}$$ $$= {{2over y} + 7 - {3over x} over {4over y} - 1 - {6 over x}}$$ $$= {7 - 5 over -1 - 10} = -{2over 11}.$$

    8. 若 $displaystyle x + {1over x} = a$, 则 $displaystyle x^6 + {1over x^6} = ?$

    解答: $$x^2 + {1over x^2} = left(x + {1over x} ight)^2 - 2 = a^2 - 2,$$ $$x^4 + {1over x^4} = left(x^2 + {1over x^2} ight)^2 - 2 = a^4 - 4a^2 + 2,$$ $$Rightarrow x^6 + {1over x^6} = left(x^2 + {1over x^2} ight)left(x^4 + {1over x^4} - 1 ight)$$ $$= (a^2 - 2)(a^4 - 4a^2 + 1) = a^6 - 6a^4 + 9a^2 - 2.$$

    9. 若 $displaystyle x+ {1over x} = -4$, 则 $displaystyle x^3 + {1over x^3} = ?$

    解答: $$x^3 + {1over x^3} = left(x + {1over x} ight)left(x^2 + {1over x^2} - 1 ight)$$ $$= left(x + {1over x} ight)left[left(x + {1over x} ight)^2 - 3 ight] = -52.$$

    10. 若 $(x-2y + 2)^2 = x(y-1)$, 则 $displaystyle{xover y-1} = ?$

    解答: $$(x-2y + 2)^2 = x(y-1)$$ $$Rightarrow x^2 + 4(y-1)^2 - 4x(y-1) = x(y-1)$$ $$Rightarrow x^2 - 5x(y-1) + 4(y - 1)^2 = 0$$ $$Rightarrow left[x - (y - 1) ight]left[x - 4(y-1) ight] = 0$$ $$Rightarrow x_1 = y-1, x_2 = 4(y - 1).$$ 因此原式的值为 $1$ 或 $4$.

    11. 若 $x^2 - 3x + 1 = 0$, 则 $displaystyle{2x^5 - 5x^4 + 2x^3 - 8x^2 over x^2 + 1} = ?$

    解答: $$2x^5 - 5x^4 + 2x^3 - 8x^2 = 2x^3(x^2 - 3x + 1) + x^4 - 8x^2$$ $$= x^2(x^2 - 3x + 1) + 3x^3 - 9x^2$$ $$= 3x(x^2 - 3x + 1) - 3x$$ $$= -3x = -(x^2 + 1)$$ $$Rightarrow {2x^5 - 5x^4 + 2x^3 - 8x^2 over x^2 + 1} = -1.$$

    12. 若 $a, b, c$ 均不为0, 且 $a+b+c = 0$, 则 $displaystyle{1over b^2 + c^2 - a^2} + {1over c^2 + a^2 - b^2} + {1over a^2 + b^2 - c^2} = ?$

    解答: $$a + b + c = 0Rightarrow a + b = -c$$ $$Rightarrow a^2 + b^2 - c^2 = a^2 + b^2 - (a + b)^2 = -2ab.$$ 同理可得 $$b^2 + c^2 - a^2 = -2bc, c^2 + a^2 - b^2 = -2ca.$$ 因此 $${1over b^2 + c^2 - a^2} + {1over c^2 + a^2 - b^2} + {1over a^2 + b^2 - c^2}$$ $$= {1over -2ab} + {1over -2bc} + {1over -2ca}= {a + b + c over -2abc} = 0.$$


    作者:赵胤
    出处:http://www.cnblogs.com/zhaoyin/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    [转发]深入理解git,从研究git目录开始
    iOS系统网络抓包方法
    charles抓包工具
    iOS多线程中performSelector: 和dispatch_time的不同
    IOS Core Animation Advanced Techniques的学习笔记(五)
    IOS Core Animation Advanced Techniques的学习笔记(四)
    IOS Core Animation Advanced Techniques的学习笔记(三)
    IOS Core Animation Advanced Techniques的学习笔记(二)
    IOS Core Animation Advanced Techniques的学习笔记(一)
    VirtualBox复制CentOS后提示Device eth0 does not seem to be present的解决方法
  • 原文地址:https://www.cnblogs.com/zhaoyin/p/6084162.html
Copyright © 2011-2022 走看看