zoukankan      html  css  js  c++  java
  • 【tf.wiki】01_TensorFlow基础 (简介+基本tf属性+简单API)

    TensorFlow 基础

    本章介绍 TensorFlow 的基本操作。

    TensorFlow 1+1

    我们可以先简单地将 TensorFlow 视为一个科学计算库(类似于 Python 下的 NumPy)。

    首先,我们导入 TensorFlow:

    import tensorflow as tf
    %%python --version
    print(tf.__version__)
    

    TensorFlow 使用 张量 (Tensor)作为数据的基本单位。TensorFlow 的张量在概念上等同于多维数组,我们可以使用它来描述数学中的标量(0 维数组)、向量(1 维数组)、矩阵(2 维数组)等各种量,示例如下:

    # 定义一个随机数(标量)
    random_float = tf.random.uniform(shape=())
    
    # 定义一个有2个元素的零向量
    zero_vector = tf.zeros(shape=(2))
    
    # 定义两个2*2的常量矩阵
    A = tf.constant([[1, 2], [3, 4]])
    B = tf.constant([[5, 6], [7, 8]])
    

    张量的 shape 、 dtype 属性和 numpy() 方法

    张量的重要属性是其形状、类型和值。可以通过张量的 shape 、 dtype 属性和 numpy() 方法获得。例如:

    # 查看矩阵A的形状/类型/数值
    print(A.shape)
    print(A.dtype)
    print(A.numpy())
    
    
    (2, 2)
    <dtype: 'int32'>
    [[1 2]
     [3 4]]
    

    TensorFlow 的大多数 API 函数会根据输入的值自动推断张量中元素的类型(一般默认为 tf.float32 )。

    不过你也可以通过加入 dtype 参数来自行指定类型,例如 zero_vector = tf.zeros(shape=(2), dtype=tf.int32) 将使得张量中的元素类型均为整数。张量的 numpy() 方法是将张量的值转换为一个 NumPy 数组。

    TensorFlow 里有大量的 操作 (Operation),使得我们可以将已有的张量进行运算后得到新的张量。示例如下:

    C = tf.add(A, B)    # 计算矩阵A和B的和
    
    D = tf.matmul(A, B) # 计算矩阵A和B的乘积
    
    print(C, D)
    
    
    tf.Tensor(
    [[ 6  8]
     [10 12]], shape=(2, 2), dtype=int32) tf.Tensor(
    [[19 22]
     [43 50]], shape=(2, 2), dtype=int32)
    

    自动求导机制 tf.GradientTape()

    TensorFlow 提供了强大的 自动求导机制 来计算导数。在即时执行模式下,TensorFlow 引入了 tf.GradientTape() 这个 “求导记录器” 来实现自动求导。以下代码展示了如何使用 tf.GradientTape() 计算函数 y(x) = x^2 在 x = 3 时的导数:

    import tensorflow as tf
    
    x = tf.Variable(initial_value=3.)
    with tf.GradientTape() as tape:     # 在 tf.GradientTape() 的上下文内,所有计算步骤都会被记录以用于求导
        y = tf.square(x) # 计算平方
    
    y_grad = tape.gradient(y, x)        # 计算y关于x的导数
    print(y, y_grad)
    
    
    tf.Tensor(9.0, shape=(), dtype=float32) tf.Tensor(6.0, shape=(), dtype=float32)
    

    这里 x 是一个初始化为 3 的 变量 (Variable),使用 tf.Variable() 声明。与普通张量一样,变量同样具有形状、类型和值三种属性。使用变量需要有一个初始化过程,可以通过在 tf.Variable() 中指定 initial_value 参数来指定初始值。这里将变量 x 初始化为 3. 1。变量与普通张量的一个重要区别是其默认能够被 TensorFlow 的自动求导机制所求导,因此往往被用于定义机器学习模型的参数。

    tf.GradientTape() 是一个自动求导的记录器。只要进入了 with tf.GradientTape() as tape 的上下文环境,则在该环境中计算步骤都会被自动记录。比如在上面的示例中,计算步骤 y = tf.square(x) 即被自动记录。离开上下文环境后,记录将停止,但记录器 tape 依然可用,因此可以通过 y_grad = tape.gradient(y, x) 求张量 y 对变量 x 的导数。

    tf.square()

    tf.square() 操作代表对输入张量的每一个元素求平方,不改变张量形状。

    tf.reduce_sum()

    tf.reduce_sum() 操作代表对输入张量的所有元素求和,输出一个形状为空的纯量张量(可以通过 axis 参数来指定求和的维度,不指定则默认对所有元素求和)。

    TensorFlow 中有大量的张量操作 API,包括数学运算、张量形状操作(如 tf.reshape())、切片和连接(如 tf.concat())等多种类型,可以通过查阅 TensorFlow 的官方 API 文档 2 来进一步了解。(类似于numpy操作)

    
    
    
    
    
    你不逼自己一把,你永远都不知道自己有多优秀!只有经历了一些事,你才会懂得好好珍惜眼前的时光!
  • 相关阅读:
    WPF项目学习.一
    AtCoder Beginner Contest 210 A~D 题解
    P7715 「EZEC-10」Shape 题解
    P6216 回文匹配 题解
    字符串学习笔记
    #2742. 「JOI Open 2016」销售基因链
    树状数组学习笔记
    2021 省选游记
    AtCoder Beginner Contest 196 E
    AtCoder Regular Contest 113 A~D题解
  • 原文地址:https://www.cnblogs.com/zhazhaacmer/p/14437196.html
Copyright © 2011-2022 走看看