Description
Farmer John has returned to the County Fair so he can attend the special events (concerts, rodeos, cooking shows, etc.). He wants to attend as many of the N (1 <= N <= 10,000) special events as he possibly can. He's rented a bicycle so he can speed from one event to the next in absolutely no time at all (0 time units to go from one event to the next!). Given a list of the events that FJ might wish to attend, with their start times (1 <= T <= 100,000) and their durations (1 <= L <= 100,000), determine the maximum number of events that FJ can attend. FJ never leaves an event early.
有N个节日每个节日有个开始时间,及持续时间. 牛想尽可能多的参加节日,问最多可以参加多少. 注意牛的转移速度是极快的,不花时间.
Input
* Line 1: A single integer, N.
* Lines 2..N+1: Each line contains two space-separated integers, T and L, that describe an event that FJ might attend.
Output
* Line 1: A single integer that is the maximum number of events FJ can attend.
Sample Input
1 6
8 6
14 5
19 2
1 8
18 3
10 6
INPUT DETAILS:
Graphic picture of the schedule:
11111111112
12345678901234567890---------这个是时间轴.
--------------------
111111 2222223333344
55555555 777777 666
这个图中1代表第一个节日从1开始,持续6个时间,直到6.
Sample Output
OUTPUT DETAILS:
FJ can do no better than to attend events 1, 2, 3, and 4.
我会n^2的算法耶……幸好数据弱
首先把每个事件的开始时间、结束时间提出来快排,然后令f[i]表示快排后前i个最多能取多少个,枚举如果f[j].t<f[i].s,那么事件j一定在i前面,就可以用j来更新答案
其实注意到if (e[j].t<e[i].s) f[i]=max(f[i],f[j]+1)这一行,显然可以用平衡树加速,但是我很懒,又不会STL的set,就不打了
#include<cstdio> #include<algorithm> using namespace std; struct event{ int s,t; }e[10010]; int n; int f[10010]; inline bool cmp(const event &a,const event &b) {return a.s<b.s||a.s==b.s&&a.t<b.t;} inline int max(int a,int b) {return a>b?a:b;} inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int main() { n=read(); for (int i=1;i<=n;i++) { e[i].s=read(); e[i].t=e[i].s+read()-1; } sort(e+1,e+n+1,cmp); for(int i=1;i<=n;i++) { f[i]=1; for (int j=1;j<i;j++) if (e[j].t<e[i].s) f[i]=max(f[i],f[j]+1); } printf("%d",f[n]); }