Description
The cows have been sent on a mission through space to acquire a new milking machine for their barn. They are flying through a cluster of stars containing N (1 <= N <= 50,000) planets, each with a trading post. The cows have determined which of K (1 <= K <=
1,000) types of objects (numbered 1..K) each planet in the cluster desires, and which products they have to trade. No planet has developed currency, so they work under the barter system: all trades consist of each party trading exactly one object (presumably
of different types). The cows start from Earth with a canister of high quality hay (item 1), and they desire a new milking machine (item K). Help them find the best way to make a series of trades at the planets in the cluster to get item K. If this task is
impossible, output -1.
Input
* Line 1: Two space-separated integers, N and K. * Lines 2..N+1: Line i+1 contains two space-separated integers, a_i and b_i respectively, that are planet i's trading trading products. The planet will give item b_i in order to receive item a_i.
Output
* Line 1: One more than the minimum number of trades to get the milking machine which is item K (or -1 if the cows cannot obtain item K).
Sample Input
6 5 //6个星球,希望得到5,开始时你手中有1号货物.
1 3 //1号星球,希望得到1号货物,将给你3号货物
3 2
2 3
3 1
2 5
5 4
1 3 //1号星球,希望得到1号货物,将给你3号货物
3 2
2 3
3 1
2 5
5 4
Sample Output
4
OUTPUT DETAILS:
The cows possess 4 objects in total: first they trade object 1 for
object 3, then object 3 for object 2, then object 2 for object 5.
OUTPUT DETAILS:
The cows possess 4 objects in total: first they trade object 1 for
object 3, then object 3 for object 2, then object 2 for object 5.
题意是有n个星球,在每个星球上你可以用a[i]物品换b[i]物品,要求用最少步数换到m。
初看连题目都没看懂……觉得好像很难的样子……看懂之后发现,这不是水题吗
转成有n条有向边,边权为1,求1到m的最短路
#include<cstdio> #include<cstring> struct edge{ int to,next,v; }e[100010]; int head[1010]; int dist[1010]; int ans[1010]; bool mrk[1010]; int q[500010]; int n,m,x,y,cnt,len,t,w=1; inline void ins(int u,int v,int w) { e[++cnt].to=v; e[cnt].v=w; e[cnt].next=head[u]; head[u]=cnt; } inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } inline void spfa() { memset(dist,127/3,sizeof(dist)); q[1]=1;mrk[1]=1;dist[1]=0; while (t<w) { int now=q[++t]; for (int i=head[now];i;i=e[i].next) if (dist[e[i].to]>dist[now]+e[i].v) { dist[e[i].to]=dist[now]+e[i].v; if (!mrk[e[i].to]) { mrk[e[i].to]=1; q[++w]=e[i].to; } } mrk[now]=0; } } int main() { m=read();n=read(); for (int i=1;i<=m;i++) { x=read();y=read(); ins(x,y,1); } spfa(); if (dist[n]>10000)dist[n]=-2; printf("%d ",dist[n]+1); }