zoukankan      html  css  js  c++  java
  • cf437C The Child and Toy

    C. The Child and Toy
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.

    The toy consists of n parts and m ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part i as vi. The child spend vf1 + vf2 + ... + vfk energy for removing part i where f1, f2, ..., fk are the parts that are directly connected to the i-th and haven't been removed.

    Help the child to find out, what is the minimum total energy he should spend to remove all n parts.

    Input

    The first line contains two integers n and m (1 ≤ n ≤ 10000 ≤ m ≤ 2000). The second line contains n integers: v1, v2, ..., vn (0 ≤ vi ≤ 105). Then followed m lines, each line contains two integers xi and yi, representing a rope from part xi to part yi (1 ≤ xi, yi ≤ nxi ≠ yi).

    Consider all the parts are numbered from 1 to n.

    Output

    Output the minimum total energy the child should spend to remove all n parts of the toy.

    Sample test(s)
    input
    4 3
    10 20 30 40
    1 4
    1 2
    2 3
    
    output
    40
    
    input
    4 4
    100 100 100 100
    1 2
    2 3
    2 4
    3 4
    
    output
    400
    
    input
    7 10
    40 10 20 10 20 80 40
    1 5
    4 7
    4 5
    5 2
    5 7
    6 4
    1 6
    1 3
    4 3
    1 4
    
    output
    160
    
    Note

    One of the optimal sequence of actions in the first sample is:

    • First, remove part 3, cost of the action is 20.
    • Then, remove part 2, cost of the action is 10.
    • Next, remove part 4, cost of the action is 10.
    • At last, remove part 1, cost of the action is 0.

    So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.

    In the second sample, the child will spend 400 no matter in what order he will remove the parts.

    打cf开黑就是爽……风骚的结构体……

    就是每次找个最大的搞掉

    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <cctype>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <bitset>
    #include <map>
    #include <ctime>
    #include <cassert>
    #include <set>
    
    using namespace std;
    typedef pair<int, int> pi;
    typedef long long ll;
    
    const int N = 1005;
    
    int cost[N];
    int A[N];
    bool done[N];
    
    vector< int > adj[N];
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);
        int n, m, a, b;
        cin >> n >> m;
        
        for(int i = 1; i <= n; i++){
            cin >> A[i];
        }
        
        for(int i = 0; i < m; i++){
            cin >> a >> b;
            adj[a].push_back(b);
            adj[b].push_back(a);
        }
        set< pi, greater< pi > > S;
        for(int i = 1; i <= n; i++){
            int& cur = cost[i];
            for(int j = 0; j < adj[i].size(); j++){
                int to = adj[i][j];
                cur += A[to];
            }
            S.insert(pi(A[i], i));
        }
        set< pi, greater< pi > >::iterator it;
        ll tot = 0;
        while(!S.empty()){
            pi cur = *S.begin();
            done[cur.second] = true;
            tot += cost[cur.second];
            S.erase(S.begin());
            for(int i = 0; i < adj[cur.second].size(); i++){
                int to = adj[cur.second][i];
                if(done[to]) continue;
                it = S.find(pi(A[to], to));
                assert(it != S.end());
                S.erase(it);
                cost[to] -= A[cur.second];
                S.insert(pi(A[to], to));
            }
        }
        
        cout << tot << endl;
        
        return 0;
    }
    

      

    其实最简单的代码是这样的:


    我当时就跪下了……

    ——by zhber,转载请注明来源
  • 相关阅读:
    Spring MVC 程序首页的设置
    绿色版Tomcat 启动 + 停止 + 随系统自动启动
    Lazy Load, 延迟加载图片的 jQuery 插件
    ibatis参数传递小技巧
    SpringMVC接收页面表单参数-java-电脑编程网
    用 JS 点击左右按钮 使图片切换
    JS数组方法汇总 array数组元素的添加和删除
    关于jQuery UI 使用心得及技巧
    MySQL查询in操作 查询结果按in集合顺序显示_Mysql_脚本之家
    JSTL c标签,fn标签,fmt标签
  • 原文地址:https://www.cnblogs.com/zhber/p/4036121.html
Copyright © 2011-2022 走看看