zoukankan      html  css  js  c++  java
  • cf437C The Child and Toy

    C. The Child and Toy
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.

    The toy consists of n parts and m ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part i as vi. The child spend vf1 + vf2 + ... + vfk energy for removing part i where f1, f2, ..., fk are the parts that are directly connected to the i-th and haven't been removed.

    Help the child to find out, what is the minimum total energy he should spend to remove all n parts.

    Input

    The first line contains two integers n and m (1 ≤ n ≤ 10000 ≤ m ≤ 2000). The second line contains n integers: v1, v2, ..., vn (0 ≤ vi ≤ 105). Then followed m lines, each line contains two integers xi and yi, representing a rope from part xi to part yi (1 ≤ xi, yi ≤ nxi ≠ yi).

    Consider all the parts are numbered from 1 to n.

    Output

    Output the minimum total energy the child should spend to remove all n parts of the toy.

    Sample test(s)
    input
    4 3
    10 20 30 40
    1 4
    1 2
    2 3
    
    output
    40
    
    input
    4 4
    100 100 100 100
    1 2
    2 3
    2 4
    3 4
    
    output
    400
    
    input
    7 10
    40 10 20 10 20 80 40
    1 5
    4 7
    4 5
    5 2
    5 7
    6 4
    1 6
    1 3
    4 3
    1 4
    
    output
    160
    
    Note

    One of the optimal sequence of actions in the first sample is:

    • First, remove part 3, cost of the action is 20.
    • Then, remove part 2, cost of the action is 10.
    • Next, remove part 4, cost of the action is 10.
    • At last, remove part 1, cost of the action is 0.

    So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.

    In the second sample, the child will spend 400 no matter in what order he will remove the parts.

    打cf开黑就是爽……风骚的结构体……

    就是每次找个最大的搞掉

    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <cctype>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <bitset>
    #include <map>
    #include <ctime>
    #include <cassert>
    #include <set>
    
    using namespace std;
    typedef pair<int, int> pi;
    typedef long long ll;
    
    const int N = 1005;
    
    int cost[N];
    int A[N];
    bool done[N];
    
    vector< int > adj[N];
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);
        int n, m, a, b;
        cin >> n >> m;
        
        for(int i = 1; i <= n; i++){
            cin >> A[i];
        }
        
        for(int i = 0; i < m; i++){
            cin >> a >> b;
            adj[a].push_back(b);
            adj[b].push_back(a);
        }
        set< pi, greater< pi > > S;
        for(int i = 1; i <= n; i++){
            int& cur = cost[i];
            for(int j = 0; j < adj[i].size(); j++){
                int to = adj[i][j];
                cur += A[to];
            }
            S.insert(pi(A[i], i));
        }
        set< pi, greater< pi > >::iterator it;
        ll tot = 0;
        while(!S.empty()){
            pi cur = *S.begin();
            done[cur.second] = true;
            tot += cost[cur.second];
            S.erase(S.begin());
            for(int i = 0; i < adj[cur.second].size(); i++){
                int to = adj[cur.second][i];
                if(done[to]) continue;
                it = S.find(pi(A[to], to));
                assert(it != S.end());
                S.erase(it);
                cost[to] -= A[cur.second];
                S.insert(pi(A[to], to));
            }
        }
        
        cout << tot << endl;
        
        return 0;
    }
    

      

    其实最简单的代码是这样的:


    我当时就跪下了……

    ——by zhber,转载请注明来源
  • 相关阅读:
    flask 文件上传(单文件上传、多文件上传)--
    flask 自定义验证器(行内验证器、全局验证器) --
    flask 使用宏渲染表单(包含错误信息) --
    flask 在模板中渲染错误消息 --
    flask 在视图函数中验证表单 --
    flask 处理表单数据 --
    flask 在模板中渲染表单 --
    flask 使用Flask-WTF处理表单 --
    flask 表单
    iPad适合写作吗
  • 原文地址:https://www.cnblogs.com/zhber/p/4036121.html
Copyright © 2011-2022 走看看