zoukankan      html  css  js  c++  java
  • Spoj-ODDDIV Odd Numbers of Divisors

    Given a positive odd integer K and two positive integers low and high, determine how many integers between low and high contain exactly K divisors.

    Input

    The first line of the input contains a positive integer C (0<C<100,000), the number of test cases to follow. Each case consists of a line containing three integers: K, low, and high (1<K<10000, 0<low≤ high<10^10). K will always be an odd integer.

    Output

    Output for each case consists of one line: the number of integers between low and high, inclusive, that contain exactly K divisors.

    Example

    Input:
    3
    3 2 49
    9 1 100
    5 55 235
    
    Output:
    4
    2
    1
    

    询问一组(k,l,r),意思是在数字l到r之间有多少个数字有奇数个因子

    显然如果对一个x质因数分解成(大π) pi^qi  那么总因子数是(大π) (qi+1)

    因为它有奇数个因数,所以所有qi都是偶数,所以x应当是完全平方数!

    因此,只要枚举x,而且l和r的范围从1e10将到1e5

    把一个询问(k,l,r)差分成(k,1,r)-(k,1,l-1),就可以离线搞了

    然后直接从1到10w枚举每个x,计算x^2有多少个因子,更新对于一个k,当前1~k已经记录了多少个完全平方数

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<queue>
     8 #include<deque>
     9 #include<set>
    10 #include<map>
    11 #include<ctime>
    12 #define LL long long
    13 #define inf 0x7ffffff
    14 #define pa pair<int,int>
    15 #define pi 3.1415926535897932384626433832795028841971
    16 using namespace std;
    17 inline LL read()
    18 {
    19     LL x=0,f=1;char ch=getchar();
    20     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    21     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    22     return x*f;
    23 }
    24 inline void write(LL a)
    25 {
    26     if (a<0){printf("-");a=-a;}
    27     if (a>=10)write(a/10);
    28     putchar(a%10+'0');
    29 }
    30 inline void writeln(LL a){write(a);printf("
    ");}
    31 LL l,r,k,n;
    32 int mx;
    33 bool isprime[100010];
    34 int sum[100100];
    35 struct ask{int k,n,rnk;}q[200010];
    36 bool operator <(ask a,ask b){return a.n<b.n;}
    37 int cnt[1324];
    38 int ans[100010];
    39 inline void init()
    40 {
    41     memset(isprime,1,sizeof(isprime));
    42     for (int i=1;i<=100000;i++)sum[i]=1;
    43     isprime[0]=isprime[1]=0;
    44     int k,l;
    45     for (int i=2;i<=100000;i++)
    46     {
    47         if (isprime[i])
    48         {
    49             sum[i]=3;
    50             for (int j=2;i*j<=100000;j++)
    51             {
    52                 isprime[i*j]=0;k=1;l=j;
    53                 while (l%i==0){l/=i;k++;}
    54                 sum[i*j]*=2*k+1;
    55             }
    56         }
    57     }
    58 }
    59 int main()
    60 {
    61     init();
    62     n=read();
    63     for (int i=1;i<=n;i++)
    64     {
    65         int x=read(),y=ceil(sqrt(read())),z=floor(sqrt(read()));
    66         mx=max(mx,z);
    67         q[2*i-1].k=x;q[2*i-1].n=y-1;q[2*i-1].rnk=-i;
    68         q[2*i].k=x;q[2*i].n=z;q[2*i].rnk=i;
    69     }
    70     sort(q+1,q+2*n+1);
    71     int now=1;
    72     for (int i=0;i<=mx;i++)
    73     {
    74         cnt[sum[i]]++;
    75         while (now<=2*n&&q[now].n==i)
    76         {
    77             if (q[now].rnk>0)ans[q[now].rnk]+=cnt[q[now].k];
    78             else ans[-q[now].rnk]-=cnt[q[now].k];
    79             now++;
    80         }
    81     }
    82     for (int i=1;i<=n;i++)printf("%d
    ",ans[i]);
    83 }
    Spoj ODDDIV
  • 相关阅读:
    unity, sceneview 中拾取球体gizmos
    C#, float.ToString()的一个坑
    unity, SerializedObject.FindProperty不要写在Editor的OnEnable里,要写在OnInspectorGUI里
    unity, 查看.anim中的动画曲线(和帧)
    unity, Graphics.Blit (null, null, mat,0);
    unity, GL.TexCoord or GL.Color must put before GL.Vertex!!!
    (MyEclipse) MyEclipse完美破解方法(图)
    博客园kubrick主题
    sina微博加入到博客园
    MyEclipse 2014 破解图文详细教程
  • 原文地址:https://www.cnblogs.com/zhber/p/7229736.html
Copyright © 2011-2022 走看看