Python即是面向过程语言,也是面向对象语言,很多其它情况下充当脚本语言的角色。虽是脚本语言,但相同涉及到代码优化的问题,代码优化可以让程序执行更快,它是在不改变程序执行结果的情况下使程序执行效率更高,依据80/20原则。实现程序的重构、优化、扩展以及文档相关的事情通常须要消耗80%的工作量。
优化通常包括双方面的内容:
1. 减小代码的体积、提高代码的可读性及可维护性。
2. 改进算法,减少代码复杂度,提高代码执行效率。
选择合适的数据结构一个良好的算法可以对性能起到关键作用。因此性能改进的首要点是对算法的改进。
在算法的时间复杂度排序上依次是:
O(1) > O(lg n) > O(n lg n) > O(n^2) > O(n^3) > O(n^k) > O(k^n) > O(n!)
比方说字典是哈希结构。遍历字典算法复杂度是O(1),而列表算法复杂度是O(n),因此查找对象字典比列表快。
以下列出一些代码优化的技巧。以概要方式总结。因为时间关系。仅仅总结当中一部分。以后会持续更新。
【说明】
測试的工具: 包含time模块,timeit模块,profile模块或cProfile模块
验证的方式: 包含Python Shell,iPython,Python脚本
測试的环境: 包含Python 2.7.6,IPython 2.3.1
NOTE:
1. 一般来说c开头是c语言实现,速度更快些,比方cProfile就比profile快。
cPickle比pickle快。
2. 一般来说Python版本号较高。在速度上都有非常大提升。所以測试环境不同,结果不一样。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【+= 比 +快】
从Python2.0開始,添加了增强性数据类型,比方说
X += Y
等价于X = X + Y
1. 就优化来说。左側仅仅需计算一次。在X += Y中,X能够使复杂的对象表达式。在增强形式中,则仅仅须要计算一次。
然而,在完整的X = X + Y中,X出现两次,必须运行两次。因此增强赋值语句通常更快些。
from timeit import Timer #记得导入timeit模块
In [4]: Timer('S = S + "eggs"','S = "SPAM"').timeit() Out[4]: 2.8523161220051065 In [5]: Timer('S += "eggs"','S = "SPAM"').timeit() Out[5]: 2.6028570826539412. 优化技术会自己主动选择,对于支持原处改动的对象而言,增强形式会自己主动运行原处的改动。
普通复制:
>>> M = [1,2,3] >>> L = M >>> M = M + [5] >>> M;L [1, 2, 3, 4] [1, 2, 3]原处改动:
>>> M = [1,2,3] >>> L = M >>> M += [4] >>> M;L [1, 2, 3, 4] [1, 2, 3, 4] >>> Timer('L = L + [4,5,6]','L = [1,2,3]').timeit(20000) 4.324376213615835 >>> Timer('L += [4,5,6]','L = [1,2,3]').timeit(20000) 0.005897484107492801++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【可变对象内置函数比合并操作快】
第一种方法: 普通加入来实现
>>> L = [1,2,3] >>> L = L + [4] >>> L [1, 2, 3, 4]另外一种方法: 内置函数来实现
>>> L = [1,2,3] >>> L.append(4) >>> L [1, 2, 3, 4]其所花费的时间,相差数百倍:
>>> Timer('L = L + [4]','L = [1,2,3]').timeit(50000) 8.118179033256638 >>> Timer('L.append(4)','L = [1,2,3]').timeit(50000) #内置函数append()方法 0.01078882192950914 >>> Timer('L.extend([4])','L = [1,2,3]').timeit(50000) #内置函数extend()方法 0.020846637858539907普通的合并操作尽管没有共享引用带来的副作用,与等效的原处改动相比。但速度非常慢。合并操作必须建立新的对象,复制左側的列表,再复制右側的列表。与之相比的是:在原处的改动法仅仅会在内存块的末尾加入元素。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【布尔測试比边界測试快】
>>> Timer('X < Y and Y < Z','X=1;Y=2;Z=3').timeit(100000000) #布尔測试 7.142944090197389 >>> Timer('X < Y < Z','X=1;Y=2;Z=3').timeit(100000000) #边界測试,推断Y结余X,Z之间 11.501173499654769++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【短路运算比and运算快】
在Python中,if用于条件推断,有以下几种情况
X and Y: X与Y同一时候为真。方为真
X or Y: X或Y任一位真,就为真。 也叫短路运算。即假设前面为真,后面则不推断
not X: X为假时方为真
In [28]: Timer('2 or 3').timeit(100000000) #短路运算:前面为真,后面不运算,所以速度快些 Out[28]: 3.780060393088206 In [29]: Timer('2 and 3').timeit(100000000) #and。必须运算为全部的,速度相对慢些 Out[29]: 4.313562268420355 In [30]: Timer('0 or 1').timeit(100000000) #or运算,但前面为假。所以和前面速度相当 Out[30]: 4.251177957004984 In [31]: Timer('not 0').timeit(100000000) #not运算,仅仅须要推断一个条件,速度快些 Out[31]: 3.6270803685183637在前面三个表达式中,短路运算和not运算无疑速度快些,and运算和or中前面条件为假者速度慢些。
所以在程序中适当使用,能够提高程序效率.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【append比insert速度快】
列表的append方法要比insert方法快的多,由于兴许的引用必须被移动以便使新元素腾地方.
复杂度append末尾加入,复杂度O(1)。而insert复杂度是O(n)
>>> Timer('L.append(4)','L=[1,2,3,5,6]').timeit(200000) 0.03233202260122425 >>> Timer('L.insert(3,4)','L=[1,2,3,5,6]').timeit(200000) 18.31223843438289++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【成员变量測试:字典和集合快于列表和元祖】
能够用in来做成员变量推断,比方'a' in 'abcd'
推断列表和元祖中是否含有某个值的操作要比字典和集合慢的多。
由于Python会对列表中的值进行线性扫描。而另外两个基于哈希表,能够瞬间完毕推断。
数据越大,越明显。
In [44]: Timer('4 in L','L=(1,2,3,4,5,6,7,8,9)').timeit(100000000) Out[44]: 12.941504527043435 #列表成员推断 In [45]: Timer('4 in T','T=[1,2,3,4,5,6,7,8,9]').timeit(100000000) Out[45]: 12.883945908790338 #元祖成员推断,和列表几乎相同 In [46]: Timer('4 in S','S=set([1,2,3,4,5,6,7,8,9])').timeit(100000000) Out[46]: 6.254324848690885 #集合成员推断。和字典几乎相同 In [47]: Timer('4 in D','D={1:"a",2:"b",3:"c",4:"d",5:"e",6:"f",7:"g",8:"h",9:"i"}').timeit(100000000) Out[47]: 6.3508488422085065 #字典成员推断
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【列表合并extend比+速度快】
列表合并(+)是一种相当费资源的操作,由于必须创建一个新列表并将全部对象复制进去。
而extend将元素附加到现有列表中,因此会快非常多,尤其是创建一个大列表时尤其如此.
+操作运行结果:
import profile #用cProfile会快些 def func_add(): #測试列表合并操作 lst = [] for i in range(5000): for item in [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]: lst = lst + item if __name__=='__main__': profile.run('func_add()') #####測试结果:##### >>> 5 function calls in 9.243 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.000 0.000 :0(range) 1 0.006 0.006 0.006 0.006 :0(setprofile) 1 0.000 0.000 9.237 9.237 <string>:1(<module>) 1 9.236 9.236 9.236 9.236 Learn.py:3(func_add) 1 0.000 0.000 9.243 9.243 profile:0(func_add()) 0 0.000 0.000 profile:0(profiler)
extend运行结果:
import profile def func_extend(): lst = [] for i in range(5000): for item in [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]: lst.extend(item) if __name__=='__main__': profile.run('func_extend()') #####输出结果:##### >>> 55005 function calls in 0.279 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 55000 0.124 0.000 0.124 0.000 :0(extend) 1 0.000 0.000 0.000 0.000 :0(range) 1 0.005 0.005 0.005 0.005 :0(setprofile) 1 0.000 0.000 0.274 0.274 <string>:1(<module>) 1 0.149 0.149 0.273 0.273 Learn.py:3(func_extend) 1 0.000 0.000 0.279 0.279 profile:0(func_extend()) 0 0.000 0.000 profile:0(profiler)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【xrange比range快】
In [9]: Timer('for i in range(1000): pass').timeit() Out[9]: 30.839959527228757 In [10]: Timer('for i in xrange(1000): pass').timeit() Out[10]: 19.644791055468943xrange是range的C语言实现。更高效的内存管理。
xrange:每次仅仅迭代一个对象
range:一次生成全部数据,须要一个个扫描
NOTE: 在Python3.0中取消了xrange函数,仅仅留range。无论这个range事实上就是xrange,仅仅只是名字变了。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【内置函数>列表推导>for循环>while循环】
http://blog.csdn.net/jerry_1126/article/details/41773277
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【局部变量>全局变量】
import profile A = 5 def param_test(): B = 5 res = 0 for i in range(100000000): res = B + i return res if __name__=='__main__': profile.run('param_test()') >>> ===================================== RESTART ===================================== >>> 5 function calls in 37.012 seconds #全局变量測试结果:37 s Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 19.586 19.586 19.586 19.586 :0(range) 1 1.358 1.358 1.358 1.358 :0(setprofile) 1 0.004 0.004 35.448 35.448 <string>:1(<module>) 1 15.857 15.857 35.443 35.443 Learn.py:5(param_test) 1 0.206 0.206 37.012 37.012 profile:0(param_test()) 0 0.000 0.000 profile:0(profiler) >>> ===================================== RESTART ===================================== >>> 5 function calls in 11.504 seconds #局部变量測试结果: 11s Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 3.135 3.135 3.135 3.135 :0(range) 1 0.006 0.006 0.006 0.006 :0(setprofile) 1 0.000 0.000 11.497 11.497 <string>:1(<module>) 1 8.362 8.362 11.497 11.497 Learn.py:5(param_test) 1 0.000 0.000 11.504 11.504 profile:0(param_test()) 0 0.000 0.000 profile:0(profiler)++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【while 1 > while True】
while 1运行结果:
import cProfile def while_1(): tag = 0 while 1: tag += 1 if tag > 100000000: break if __name__=='__main__': cProfile.run('while_1()') >>> ===================================== RESTART ===================================== >>> 4 function calls in 5.366 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.006 0.006 0.006 0.006 :0(setprofile) 1 0.000 0.000 5.360 5.360 <string>:1(<module>) 1 5.360 5.360 5.360 5.360 Learn.py:3(while_1) 0 0.000 0.000 profile:0(profiler) 1 0.000 0.000 5.366 5.366 profile:0(while_1())while True运行结果:
import cProfile def while_true(): tag = 0 while True: tag += 1 if tag > 100000000: break if __name__=='__main__': cProfile.run('while_true()') >>> ===================================== RESTART ===================================== >>> 4 function calls in 8.236 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.012 0.012 0.012 0.012 :0(setprofile) 1 0.000 0.000 8.224 8.224 <string>:1(<module>) 1 8.224 8.224 8.224 8.224 Learn.py:10(while_true) 0 0.000 0.000 profile:0(profiler) 1 0.000 0.000 8.236 8.236 profile:0(while_true())NOTE: while 1比while True,运行快些,是由于Python 2.x中True相当于全局变量,非keyword.
尽管前者比后者快些,但后者可读性无疑更好些.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【求交集集合比列表快】
列表測试结果:
from time import time t1 = time() list_1 = [32,78,65,99,19,43,18,22,7,1,9,2,4,8,56] list_2 = [3,4,8,56,99,100] temp = [] for x in range(1000000): for i in list_2: for j in list_1: if i == j: temp.append(i) t2 = time() print "Total time:", t2 - t1 #測试结果: >>> Total time: 13.6879999638集合測试结果:
from time import time t1 = time() set_1 = set([32,78,65,99,19,43,18,22,7,1,9,2,4,8,56]) set_2 = set([3,4,8,56,99,100]) for x in range(1000000): set_same = set_1 & set_2 t2 = time() print "Total time:", t2 - t1 #測试结果: >>> Total time: 0.611000061035NOTE: 用集合的方式取交集速度快的多。
以下是经常使用的集合操作。
>>> set1 = set([2,3,4,8,9]) #集合1 >>> set2 = set([1,3,4,5,6]) #集合2 >>> set1 & set2 #求交集 set([3, 4]) >>> set1 | set2 #求合集 set([1, 2, 3, 4, 5, 6, 8, 9]) >>> set1 - set2 #求差集 set([8, 9, 2]) >>> set1 ^ set2 #求异或:即排除共同部分 set([1, 2, 5, 6, 8, 9])++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【直接交换两变量 > 借助中间变量】
要交换X,Y的值。有两种方法:
1. 直接交换: X, Y = Y, X
>>> X,Y = 1,2 >>> X,Y (1, 2) >>> X, Y = Y, X >>> X,Y (2, 1)2.借助中间变量: T = X, X = Y, Y = X
>>> X,Y = 1,2 >>> X,Y (1, 2) >>> T = X; X = Y; Y = T >>> X,Y (2, 1)測试结果:
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【is not速度快于!=】
在if条件推断中。能够用 if a is not None:或者 if a != None 前者执行速度快于后者.
測试结果:
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【''.join(list)速度快于+或+=】
+測试结果:
''.join(list)測试结果:
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【在循环体外运行函数比在循环中快】
所以要降低函数的调用次数
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【**比pow()速度快】
測试结果:
**其速度是pow()函数的几十倍,并且数据越大,越明显。
**相当于Python的移位操作: 右移(>>) 和 左移(<<)比方说 2**2 = 4相当于 2 << 1 其速度相当!
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【生成器速度比列表快】
前者是列表解析对象。后者是generate对象。所需的内存空间与列表大小无关。所以速度快些.
在实际应用中,比方说创建一个集合,用生成器对象明显比列表对象要快些。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【浅拷贝的速度比深拷贝速度快】
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【cPickle比pickle速度快】
pickle模块和cPickle模块都能够将Python对象永久存储在系统文件里。
但cPickle是Python的C语言实现。因而速度更快些。
请看以下对照:
存储一个百万级别大小的列表,用cPickle模块差点儿10倍于pickle模块。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【int()比int(math.floor())快】
比方对浮点数取整,32.9,假设要取年龄的话。仅仅能是32。
能够有两种方式
一种: int(math.floor(32.9)) # floor先取32.0再转为整数
一种: int(32.9) # 直接向下取整,math.floor()下多余的
能够看出,另外一种方式要比第一种快的多。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【读取文件操作for循环比while高效】
測试项目: test.txt 3M的文件
測试结果: 182.62s
for line in open('filename'):
process(line)
上面这样的方式应该读取文件的最佳方式:原因有三
1.写法最简单
2. 执行最高速
3. 从内存使用角度来看,也是最好的
NOTE:
1. readlines()是一次性载入全部的行,而xreadlines()是按须要载入。可避免大文件导致内存泄露
2. readline()是迭代逐行读取。从内存角度来说。在大文件处理中。效率要比readlines()高
3. 超大文件的话,用readlines()方式能够会导致内存崩溃。
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【字典的迭代取值比直接取值高效】
>>> Timer('for v in d.values(): pass',"d={'a':1,'b':2,'c':3,'d':4,'e':5}").timeit(100000000) 43.297132594847085 >>> Timer('for v in d.itervalues(): pass',"d={'a':1,'b':2,'c':3,'d':4,'e':5}").timeit(100000000) 36.16957129734047也就是说:
# d.itervalues() 比d.values()要快些 # d.iteritems() 比d.items()要快些 # d.iterkeys() 比d.keys()要快些++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
【创建字典常规方法比工厂方法要快】
常规方法:
d={'x':1, 'y':2, 'z':3}
工厂方法:例如以下面几种
1. dict((['x',1], ['y',2], ['z',3]))
2. dict(zip(('x', 'y', 'z'), (1, 2, 3)))
3. dict(x=1, y=2, z=3)
>>> Timer("d={'x':1, 'y':2, 'z':3}").timeit() 0.19084989859678103 >>> Timer("dict((['x',1], ['y',2], ['z',3]))") <timeit.Timer instance at 0x0000000002E06288> >>> Timer("dict((['x',1], ['y',2], ['z',3]))").timeit() 1.5503493690009975相同工厂方法创建新字典速度比copy()函数慢
>>> Timer("D2=copy.copy({'x':1, 'y':2, 'z':3})","import copy").timeit() 1.074277245445046 >>> Timer("D3=dict((['x',1], ['y',2], ['z',3]))").timeit() 1.5830155758635556